Prostate cancer risk–associated variants have been reported in populations of European descent, African-Americans and Japanese using genome-wide association studies (GWAS). To systematically investigate prostate cancer risk–associated variants in Chinese men, we performed the first GWAS in Han Chinese. In addition to confirming several associations reported in other ancestry groups, this study identified two new risk-associated loci for prostate cancer on chromosomes 9q31.2 (rs817826, P = 5.45 × 10−14) and 19q13.4 (rs103294, P = 5.34 × 10−16) in 4,484 prostate cancer cases and 8,934 controls. The rs103294 marker at 19q13.4 is in strong linkage equilibrium with a 6.7-kb germline deletion that removes the first six of seven exons in LILRA3, a gene regulating inflammatory response, and was significantly associated with the mRNA expression of LILRA3 in T cells (P < 1 × 10−4). These findings may advance the understanding of genetic susceptibility to prostate cancer.
Iron homeostasis is strictly governed in mammals; however, disordered iron metabolism (such as excess iron burden) is recognized as a risk factor for various types of diseases including cancers. Burgeoning evidence indicates that the central signaling of iron homeostasis, the hepcidin-ferroportin axis, is misregulated in cancers. Nonetheless, the mechanisms of misregulated expression of iron-related genes along this signaling in cancers remain largely unknown. In the current study, we found increased levels of serum hepcidin in breast cancer patients. Reduction of hepatic hepcidin through administration of heparin restrained tumorigenic properties of breast tumor cells. Mechanistic investigation revealed that increased iron, bone morphogenetic protein-6 (BMP6) and interleukin-6 (IL-6) jointly promoted the synthesis of hepatic hepcidin. Tumor hepcidin expression was marginally increased in breast tumors relative to adjacent tissues. In contrast, tumor ferroportin concentration was greatly reduced in breast tumors, especially in malignant tumors, compared to adjacent tissues. Elevation of ferroportin concentration inhibited cell proliferation in vitro and in vivo by knocking down tumor hepcidin expression. Additionally, increased IL-6 was demonstrated to jointly enhance the tumorigenic effects of iron through enforcing cell growth. Our combined data overall deciphered the machinery that altered the hepcidin-ferroportin signaling in breast cancers. Thus, targeting the hepcidin-ferroportin signaling would represent a promising therapeutics to restrain breast cancer growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.