Oral delivery of peptide/protein drugs has attracted worldwide attention due to its good patient compliance and convenience of administration. Orally administered nanocarriers always encounter the rigorous defenses of the gastrointestinal tract, which mainly consist of mucus and epithelium barriers. However, diametrically opposite surface properties of nanocarriers are required for good mucus penetration and high epithelial uptake. Here, bovine serum albumin (BSA) is adsorbed to cationic liposomes (CLs) to form protein corona liposomes (PcCLs). The aim of using PcCLs is to conquer the mucus and epithelium barriers, eventually improving the oral bioavailability of insulin. Investigations using in vitro and in vivo experiments show that the uptake amounts and transepithelial permeability of PcCLs are 3.24‐ and 7.91‐fold higher than that of free insulin, respectively. Further study of the behavior of PcCLs implies that BSA corona can be shed from PcCLs as they cross the mucus layer, which results in the exposure of CLs to improve the transepithelial transport. Intrajejunal administration of PcCLs in type I diabetic rats produces a remarkable hypoglycemic effect and increases the oral bioavailability up to 11.9%. All of these results imply that PcCLs may provide a new insight into the method for oral insulin delivery by overcoming the multiple barriers.
Lipid nanovesicles are widely present as transport vehicles in living organisms and can serve as efficient drug delivery vectors. It is known that the size and surface charge of nanovesicles can affect their diffusion behaviors in biological hydrogels such as mucus. However, how temperature effects, including those of both ambient temperature and phase transition temperature (Tm), influence vehicle transport across various biological barriers outside and inside the cell remains unclear. Here, we utilize a series of liposomes with differentTmas typical models of nanovesicles to examine their diffusion behavior in vitro in biological hydrogels. We observe that the liposomes gain optimal diffusivity when theirTmis around the ambient temperature, which signals a drastic change in the nanovesicle rigidity, and that liposomes withTmaround body temperature (i.e., ∼37 °C) exhibit enhanced cellular uptake in mucus-secreting epithelium and show significant improvement in oral insulin delivery efficacy in diabetic rats compared with those with higher or lowerTm. Molecular-dynamics (MD) simulations and superresolution microscopy reveal a temperature- and rigidity-mediated rapid transport mechanism in which the liposomes frequently deform into an ellipsoidal shape near the phase transition temperature during diffusion in biological hydrogels. These findings enhance our understanding of the effect of temperature and rigidity on extracellular and intracellular functions of nanovesicles such as endosomes, exosomes, and argosomes, and suggest that matchingTmto ambient temperature could be a feasible way to design highly efficient nanovesicle-based drug delivery vectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.