The microwave (MW) field can be measured by the Autler–Townes (AT) splitting of the electromagnetically induced transparency (EIT) spectrum in the Rydberg atomic system; however, the EIT-AT splitting method fails in weak MW fields. We used the amplitude modulation of the MW field to resolve the EIT-AT splitting in weak MW fields. The EIT-AT splitting interval can be directly obtained, and the minimum detectable MW strength is improved by six times compared with the traditional EIT-AT splitting method. The proposed method is more intuitive and convenient for measuring the strength of weak MW fields in practical applications.
We herein develop and demonstrate a stable frequency-locking scheme for Rydberg atomic experiments. We use the Zeeman effect to modulate the three-level ladder-type Rydberg electromagnetically induced transparency (EIT) signal to lock the laser frequency of the coupling light for transition from its intermediate state to a Rydberg state. The effects of polarization of the probe and coupling lights, and the amplitude of the AC modulated magnetic field
B
0
on the EIT and the corresponding dispersive error signal, are both analyzed. The results show that both the EIT signal and dispersive error signal are the strongest when the polarizations of coupling and probe fields are circular and equal. The signal-to-noise ratio of the dispersive error signal increases with
B
0
. The slope of the dispersive error signal increases first and then decreases with
B
0
, which is related to the increase of the EIT linewidth caused by the higher
B
0
. The linewidth of the laser is significantly less than 500 kHz after frequency locking, which satisfies the requirements of most experiments involving Rydberg atoms. The method proposed herein can generally be applied to any cascade system of Rydberg atoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.