Accelerating convolutional neural networks has recently received ever-increasing research focus. Among various approaches proposed in the literature, filter pruning has been regarded as a promising solution, which is due to its advantage in significant speedup and memory reduction of both network model and intermediate feature maps. To this end, most approaches tend to prune filters in a layer-wise fixed manner, which is incapable to dynamically recover the previously removed filter, as well as jointly optimize the pruned network across layers. In this paper, we propose a novel global & dynamic pruning (GDP) scheme to prune redundant filters for CNN acceleration. In particular, GDP first globally prunes the unsalient filters across all layers by proposing a global discriminative function based on prior knowledge of filters. Second, it dynamically updates the filter saliency all over the pruned sparse network, and then recover the mistakenly pruned filter, followed by a retraining phase to improve the model accuracy. Specially, we effectively solve the corresponding non-convex optimization problem of the proposed GDP via stochastic gradient descent with greedy alternative updating. Extensive experiments show that, comparing to the state-of-the-art filter pruning methods, the proposed approach achieves superior performance to accelerate several cutting-edge CNNs on the ILSVRC 2012 benchmark.
Neural models with minimal feature engineering have achieved competitive performance against traditional methods for the task of Chinese word segmentation. However, both training and working procedures of the current neural models are computationally inefficient. This paper presents a greedy neural word segmenter with balanced word and character embedding inputs to alleviate the existing drawbacks. Our segmenter is truly end-toend, capable of performing segmentation much faster and even more accurate than state-of-the-art neural models on Chinese benchmark datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.