AKI is a common clinical condition associated with the risk of developing CKD and ESKD. Sepsis is the leading cause of AKI in the intensive care unit (ICU) and accounts for nearly half of all AKI events. Patients with AKI who require dialysis have an unacceptably high mortality rate of 60%–80%. During sepsis, endothelial activation, increased microvascular permeability, changes in regional blood flow distribution with resulting areas of hypoperfusion, and hypoxemia can lead to AKI. No effective drugs to prevent or treat human sepsis-induced AKI are currently available. Recent research has identified dysfunction in energy metabolism as a critical contributor to the pathogenesis of AKI. Mitochondria, the center of energy metabolism, are increasingly recognized to be involved in the pathophysiology of sepsis-induced AKI and mitochondria could serve as a potential therapeutic target. In this review, we summarize the potential role of mitochondria in sepsis-induced AKI and identify future therapeutic approaches that target mitochondrial function in an effort to treat sepsis-induced AKI.
Sepsis is characterized by a dysregulated immune response to infection leading to life-threatening organ dysfunction. Sepsis-induced liver injury is recognized as a powerful independent predictor of mortality in the intensive care unit. During systemic infections, the liver regulates immune defenses via bacterial clearance, production of acute-phase proteins (APPs) and cytokines, and metabolic adaptation to inflammation. Increased levels of inflammatory cytokines and impaired bacterial clearance and disrupted metabolic products can cause gut microbiota dysbiosis and disruption of the intestinal mucosal barrier. Changes in the gut microbiota play crucial roles in liver injury during sepsis. Bacterial translocation and resulting intestinal inflammation lead to a systemic inflammatory response and acute liver injury. The gut-liver crosstalk is a potential target for therapeutic interventions. This review analyzes the underlying mechanisms for the gut-liver crosstalk in sepsis-induced liver injury.
NephroCheck® is the commercial name of a combined product of two urinary biomarkers, tissue inhibitor of metalloproteinases-2 (TIMP-2) and insulin-like growth factor-binding protein 7 (IGFBP7), expressed as [TIMP-2]·[IGFBP7], used to identify patients at high risk of acute kidney injury (AKI). AKI is a common and harmful complication especially in critically-ill patients, which can induce devastating short- and long-term outcomes. Over the past decade, numerous clinical studies have evaluated the utility of several biomarkers (e.g. neutrophil gelatinase-associated lipocalin, interleukin-18, liver-type fatty acid binding protein and kidney injury molecule-1, cystatin C) in the early diagnosis and risk stratification of AKI. Among all these biomarkers, [TIMP-2]·[IGFBP7] was confirmed to be superior in early detection of AKI, before the decrease of renal function is evident. In 2014, the US Food and Drug Administration permitted marketing of NephroCheck® (Astute Medical) (measuring urinary [TIMP-2]·[IGFBP7]) to determine if certain critically-ill patients are at risk of developing moderate to severe AKI. It has since been applied to clinical work in many hospitals of the United States and Europe to improve the diagnostic accuracy and outcomes of AKI patients. Now, more and more research is devoted to the evaluation of its application value, meaning and method in different clinical settings. In this review, we summarize the current research status of [TIMP-2]·[IGFBP7] and point out its future directions.
Purpose In the critically ill, hospital-acquired bloodstream infections (HA-BSI) are associated with significant mortality. Granular data are required for optimizing management, and developing guidelines and clinical trials. Methods We carried out a prospective international cohort study of adult patients (≥ 18 years of age) with HA-BSI treated in intensive care units (ICUs) between June 2019 and February 2021. Results 2600 patients from 333 ICUs in 52 countries were included. 78% HA-BSI were ICU-acquired. Median Sequential Organ Failure Assessment (SOFA) score was 8 [IQR 5; 11] at HA-BSI diagnosis. Most frequent sources of infection included pneumonia (26.7%) and intravascular catheters (26.4%). Most frequent pathogens were Gram-negative bacteria (59.0%), predominantly Klebsiella spp. (27.9%), Acinetobacter spp . (20.3%), Escherichia coli (15.8%), and Pseudomonas spp . (14.3%). Carbapenem resistance was present in 37.8%, 84.6%, 7.4%, and 33.2%, respectively. Difficult-to-treat resistance (DTR) was present in 23.5% and pan-drug resistance in 1.5%. Antimicrobial therapy was deemed adequate within 24 h for 51.5%. Antimicrobial resistance was associated with longer delays to adequate antimicrobial therapy. Source control was needed in 52.5% but not achieved in 18.2%. Mortality was 37.1%, and only 16.1% had been discharged alive from hospital by day-28. Conclusions HA-BSI was frequently caused by Gram-negative, carbapenem-resistant and DTR pathogens. Antimicrobial resistance led to delays in adequate antimicrobial therapy. Mortality was high, and at day-28 only a minority of the patients were discharged alive from the hospital. Prevention of antimicrobial resistance and focusing on adequate antimicrobial therapy and source control are important to optimize patient management and outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s00134-022-06944-2.
Sepsis is the leading cause of acute kidney injury (AKI) in the intensive care unit (ICU). Septic AKI is a complex and multifactorial process that is incompletely understood. During sepsis, the disruption of the mucus membrane barrier, a shift in intestinal microbial flora, and microbial translocation may lead to systemic inflammation, which further alters host immune and metabolic homeostasis. This altered homeostasis may promote and potentiate the development of AKI. As part of this vicious cycle, when AKI develops, the clearance of inflammatory mediators and metabolic products is decreased. This will lead to further gut injury and breakdown in mucous membrane barriers. Thus, changes in the gut during sepsis can initiate and propagate septic AKI. This deleterious gut–kidney crosstalk may be a potential target for therapeutic maneuvers. This review analyses the underlying mechanisms in gut–kidney crosstalk in septic AKI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.