Background Vitamin D plays critical role in the female reproductive system. It seems that vitamin D is associated with clinical pregnancy outcomes of assisted reproductive technologies (ART), but its role remains elusive. This study is aimed to establish whether vitamin D is associated with clinical outcomes of in vitro fertilization (IVF). Methods The cross-sectional study was carried out from January 1st 2017 to December 31st 2017. A total of 848 patients who had indications for IVF were enrolled. The patients were classified by serum 25 (OH) D quartiles. The outcome parameters of IVF were compared in each group, including normal fertilization rate, high quality embryo rate, clinical pregnancy rate, implantation rate and live birth rate. Results The median 25 (OH) D concentration was 15.25 ng/ml. Serum 25 (OH) D levels in women varied with the seasons. We found that serum 25 (OH) D levels were higher in autumn than other seasons, and the lowest level occurred in spring. Follicular fluid (FF) vitamin D levels were positively correlated with serum vitamin D levels ( r = 0.85, P < 0.001). The levels of FF vitamin D were significantly higher than the levels of serum vitamin D ( P < 0.001). Normal fertilization rates were significantly different among four groups ( P = 0.007). The group of women with the highest serum 25 (OH) D levels had the highest normal fertilization rate. However, the clinical pregnancy rate, implantation rate and live birth rates were not significantly different among the four groups when the age, BMI, AMH, seasons of blood drawing, COH protocol, high quality embryo rate and number of embryos transferred were adjusted. In addition, we found that serum 25 (OH) D levels were significantly higher in patients received IVF than patients received R-ICSI ( P = 0.013). Conclusions Among Chinese women, lower serum vitamin D levels are associated with a lower fertilization rate in IVF. However, vitamin D level was not associated with the clinical pregnancy and live birth rate following IVF. Electronic supplementary material The online version of this article (10.1186/s12958-019-0500-0) contains supplementary material, which is available to authorized users.
Background: Previous studies of primary ovarian insufficiency (POI) have focused on granulosa cells (GCs) and ignored the role of theca-interstitial cells (TICs). This study aims to explore the mechanism of the protective effects of human umbilical cord-derived mesenchymal stem cells (hUMSCs) on ovarian function in POI rats by regulating autophagy of TICs. Methods: The POI model was established in rats treated with cisplatin (CDDP). The hUMSCs were transplanted into POI rats by tail vein. Enzyme-linked immunosorbent assay (ELISA) analysis, hematoxylin and eosin (HE) staining, and immunohistochemistry were used to measure the protective effects of hUMSCs. The molecular mechanisms of injury and repairment of TICs were assessed by immunofluorescence, transmission electron microscope (TEM), flow cytometry (FCM), western blot, and quantitative real-time polymerase chain reaction (qRT-PCR). Results: In vivo, hUMSC transplantation restored the ovarian function and alleviated the apoptosis of TICs in POI rats. In vitro, hUMSCs reduced the autophagy levels of TICs by reducing oxidative stress and regulating AMPK/mTOR signaling pathway, thereby alleviating the apoptosis of TICs. Conclusion: This study indicates that hUMSCs protected ovarian function in POI by regulating autophagy signaling pathway AMPK/mTOR.
Preeclampsia (PE), a pregnancy‐specific disorder, is associated with impaired uterine spiral artery remodelling, which is related to the dysfunction of trophoblast cells. Lately, mounting evidence has indicated that aberrant expression of long non‐coding RNAs (lncRNAs) is associated with various human diseases. The lncRNA MVIH transcript has been shown to decrease the severity of several diseases. However, the biological function of MVIH, which is down‐regulated in placental tissues in PE, has not yet been clarified. Here, we report that MVIH may act as a vital factor in the pathogenesis of PE. In this study, functional analysis revealed that the silencing of MVIH expression via transfection with small interfering RNA (siRNAs) inhibited cell growth, migration, invasion, and angiogenesis in various trophoblast cell lines, and stimulation with MVIH could promote these functions. Mass spectrometry analysis revealed that MVIH could modulate Jun‐B protein expression, which has been reported to potentially regulate cell growth and angiogenesis. Further cotransfection assays were performed, revealing that MVIH and Jun‐B have a synergistic effect on the regulation of angiogenesis and cell proliferation. Taking these findings together, MVIH could be associated with PE and may be a candidate biomarker for its diagnosis and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.