The permafrost organic carbon (OC) stock is of global significance because of its large pool size and the potential positive feedback to climate warming. However, due to the lack of systematic field observations and appropriate upscaling methodologies, substantial uncertainties exist in the permafrost OC budget, which limits our understanding of the fate of frozen carbon in a warming world. In particular, the lack of comprehensive estimates of OC stocks across alpine permafrost means that current knowledge on this issue remains incomplete. Here, we evaluated the pool size and spatial variations of permafrost OC stock to 3 m depth on the Tibetan Plateau by combining systematic measurements from a substantial number of pedons (i.e. 342 three-metre-deep cores and 177 50-cm-deep pits) with a machine learning technique (i.e. support vector machine, SVM). We also quantified uncertainties in permafrost carbon budget by conducting Monte Carlo simulations. Our results revealed that the combination of systematic measurements with the SVM model allowed spatially explicit estimates to be made. The OC density (OC amount per unit area, OCD) exhibited a decreasing trend from the south-eastern to the north-western plateau, with the exception that OCD in the swamp meadow was substantially higher than that in surrounding regions. Our results also demonstrated that Tibetan permafrost stored a large amount of OC in the top 3 m, with the median OC pool size being 15.31 Pg C (interquartile range: 13.03-17.77 Pg C). 44% of OC occurred in deep layers (i.e. 100-300 cm), close to the proportion observed across the northern circumpolar permafrost region. The large carbon pool size together with significant permafrost thawing suggests a risk of carbon emissions and positive climate feedback across the Tibetan alpine permafrost region.
Summary1. Arbuscular mycorrhizal fungi (AMF) can influence plant community composition and diversity. Previous research has shown that the addition of nutrients reduces the effectiveness of AMF. However, the ways in which soil nutrient availability and AMF interact and affect plant community productivity and ecosystem stability are still poorly understood. 2. We examined the impact of AMF suppression and phosphorus (P) addition on plant diversity, community productivity and temporal stability (TS) in a field experiment. AMF root colonization and the concentration of an AMF-specific phospholipid fatty acid were significantly reduced after application of the fungicide benomyl as a soil drench. 3. The TS of the plant community was higher in communities without benomyl application compared with communities with benomyl application indicating that AMF contribute to the TS of plant communities. AMF suppression increased productivity at the plant species, functional group and community levels under high P addition rates. At the zero P addition rate, AMF did not affect plant community productivity, as the dominant species Artemisia frigida was more abundant in control plots with AMF, while the subdominant species Stipa krylovii was more abundant in the benomyltreated plots with reduced AMF abundance. Compensatory effects between C 3 grasses and non-N 2 -fixing forbs were observed in the control plots with AMF along the gradient of P addition rates, but these effects were not detected among plant species in the benomyl-treated plots under AMF suppression above an addition rate of 4.76 P 2 O 5 m À2 year À1 . Although AMF suppression did not influence the diversity of the plant communities, it did decrease the diversity of N 2 -fixing forbs at the zero P addition rate and above an addition rate of 18.90 g P 2 O 5 m À2 year À1 , indicating that AMF play key roles in the maintenance of N 2 -fixing forbs at these P addition rates. P addition led to biodiversity losses at application rates below 2.36 g P 2 O 5 m À2 year À1 at the community level.4. Synthesis. Arbuscular mycorrhizal fungi and soil P availability interact to influence the productivity and TS of a plant community by mediating compensatory effects among plant species and functional groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.