Phosphatidylinositol 3-kinases (PI3Ks) are lipid kinases that regulate diverse cellular processes including proliferation, adhesion, survival, and motility. Dysregulated PI3K pathway signaling occurs in one-third of human tumors. Aberrantly activated PI3K signaling also confers sensitivity and resistance to conventional therapies. PI3K has been recognized as an attractive molecular target for novel anti-cancer molecules. In the last few years, several classes of potent and selective small molecule PI3K inhibitors have been developed, and at least fifteen compounds have progressed into clinical trials as new anticancer drugs. Among these, idelalisib has advanced to phase III trials in patients with advanced indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. In this review, we summarized the major molecules of PI3K signaling pathway, and discussed the preclinical models and clinical trials of potent small-molecule PI3K inhibitors.
During tumor progression, a subset of cancer cells escape from immune surveillance and eventually develop into measurable tumor mass. Cancer immunotherapy eradicates tumor cells by enhancing multiple steps in cancer-immunity cycle including antigen presentation, T cell priming, activation, and immune killing activity. Immunotherapy has been verified as an effective strategy in multiple cancers, but some problems still exist in actual clinical practice such as frequent primary and adaptive resistance. Combination with other adjuvant therapies gives us a new perspective to overcome the emerging obstacles in immunotherapy application. Recently, a series of studies demonstrated that the vital component of host innate immunity — cGAS-STING pathway might play an important role in anti-cancer immunity. It is generally acknowledged that the downstream signals of cGAS-STING especially type I interferon (IFN) bridge innate immunity and adaptive immunity. Given the functions of type I IFN in promoting the maturation and migration of dendritic cells, enhancing cytotoxic T lymphocyte- or natural killer cell-mediated cytotoxicity effect, and protecting effector cells from apoptosis, we believe cGAS-STING agonist might be used as sensitizer for multiple immunotherapies such as cancer vaccine, immune checkpoint blockade, and chimeric antigen receptor T cell therapy. In this review, we highlight the latest understanding of cGAS-STING pathway and the advances of the combination therapy of STING agonist and immunotherapy.
With the advent of new agents targeting CD20, Bruton’s tyrosine kinase, and phosphoinositol-3 kinase for chronic lymphoid leukemia (CLL), more treatment options exist than ever before. B-cell lymphoma-2 (BCL-2) plays a major role in cellular apoptosis and is a druggable target. Small molecule inhibitors of BCL-2 are in active clinical studies. ABT-199 (venetoclax, RG7601, GDC-0199) has been granted breakthrough designation by FDA for relapsed or refractory CLL with 17p deletion. In this review, we summarized the latest clinical development of ABT-199/venetoclax and other novel agents targeting the BCL-2 proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.