The University of California Santa Cruz (UCSC) Genome Browser Database is an up to date source for genome sequence data integrated with a large collection of related annotations. The database is optimized to support fast interactive performance with the web-based UCSC Genome Browser, a tool built on top of the database for rapid visualization and querying of the data at many levels. The annotations for a given genome are displayed in the browser as a series of tracks aligned with the genomic sequence. Sequence data and annotations may also be viewed in a text-based tabular format or downloaded as tab-delimited flat files. The Genome Browser Database, browsing tools and downloadable data files can all be found on the UCSC Genome Bioinformatics website (http://genome.ucsc.edu), which also contains links to documentation and related technical information.
Levels of recombination vary among species, among chromosomes within species, and among regions within chromosomes in mammals. This heterogeneity may affect levels of diversity, efficiency of selection, and genome composition, as well as have practical consequences for the genetic mapping of traits. We compared the genetic maps to the genome sequence assemblies of rat, mouse, and human to estimate local recombination rates across these genomes. Humans have greater overall levels of recombination, as well as greater variance. In rat and mouse, the size of the chromosome and proximity to telomere have less effect on local recombination rate than in human. At the chromosome level, rat and mouse X chromosomes have the lowest recombination rates, whereas human chromosome X does not show the same pattern. In all species, local recombination rate is significantly correlated with several sequence variables, including GC%, CpG density, repetitive elements, and the neutral mutation rate, with some pronounced differences between species. Recombination rate in one species is not strongly correlated with the rate in another, when comparing homologous syntenic blocks of the genome. This comparative approach provides additional insight into the causes and consequences of genomic heterogeneity in recombination.
The success of genome-wide association studies has paralleled the development of efficient genotyping technologies. We describe the development of a next-generation microarray based on the new highly-efficient Affymetrix Axiom genotyping technology that we are using to genotype individuals of European ancestry from the Kaiser Permanente Research Program on Genes, Environment and Health (RPGEH). The array contains 674,517 SNPs, and provides excellent genome-wide as well as gene-based and candidate-SNP coverage. Coverage was calculated using an approach based on imputation and cross validation. Preliminary results for the first 80,301 saliva-derived DNA samples from the RPGEH demonstrate very high quality genotypes, with sample success rates above 94% and over 98% of successful samples having SNP call rates exceeding 98%. At steady state, we have produced 462 million genotypes per week for each Axiom system. The new array provides a valuable addition to the repertoire of tools for large scale genome-wide association studies.
We introduce the design and implementation of a new array, the Korea Biobank Array (referred to as KoreanChip), optimized for the Korean population and demonstrate findings from GWAS of blood biochemical traits. KoreanChip comprised >833,000 markers including >247,000 rare-frequency or functional variants estimated from >2,500 sequencing data in Koreans. Of the 833 K markers, 208 K functional markers were directly genotyped. Particularly, >89 K markers were presented in East Asians. KoreanChip achieved higher imputation performance owing to the excellent genomic coverage of 95.38% for common and 73.65% for low-frequency variants. From GWAS (Genome-wide association study) using 6,949 individuals, 28 associations were successfully recapitulated. Moreover, 9 missense variants were newly identified, of which we identified new associations between a common population-specific missense variant, rs671 (p.Glu457Lys) of ALDH2, and two traits including aspartate aminotransferase (P = 5.20 × 10−13) and alanine aminotransferase (P = 4.98 × 10−8). Furthermore, two novel missense variants of GPT with rare frequency in East Asians but extreme rarity in other populations were associated with alanine aminotransferase (rs200088103; p.Arg133Trp, P = 2.02 × 10−9 and rs748547625; p.Arg143Cys, P = 1.41 × 10−6). These variants were successfully replicated in 6,000 individuals (P = 5.30 × 10−8 and P = 1.24 × 10−6). GWAS results suggest the promising utility of KoreanChip with a substantial number of damaging variants to identify new population-specific disease-associated rare/functional variants.
The Kaiser Permanente (KP) Research Program on Genes, Environment and Health (RPGEH), in collaboration with the University of California-San Francisco, undertook genome-wide genotyping of .100,000 subjects that constitute the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. The project, which generated .70 billion genotypes, represents the first large-scale use of the Affymetrix Axiom Genotyping Solution. Because genotyping took place over a short 14-month period, creating a near-real-time analysis pipeline for experimental assay quality control and final optimized analyses was critical. Because of the multi-ethnic nature of the cohort, four different ethnic-specific arrays were employed to enhance genome-wide coverage. All assays were performed on DNA extracted from saliva samples. To improve sample call rates and significantly increase genotype concordance, we partitioned the cohort into disjoint packages of plates with similar assay contexts. Using strict QC criteria, the overall genotyping success rate was 103,067 of 109,837 samples assayed (93.8%), with a range of 92.1-95.4% for the four different arrays. Similarly, the SNP genotyping success rate ranged from 98.1 to 99.4% across the four arrays, the variation depending mostly on how many SNPs were included as single copy vs. double copy on a particular array. The high quality and large scale of genotype data created on this cohort, in conjunction with comprehensive longitudinal data from the KP electronic health records of participants, will enable a broad range of highly powered genome-wide association studies on a diversity of traits and conditions. KEYWORDS genome-wide genotyping; GERA cohort; Affymetrix Axiom; saliva DNA; quality control T HE Genetic Epidemiology Research on Adult Health and Aging (GERA) resource is a cohort of .100,000 subjects who are participants in the Kaiser Permanente Medical Care Plan, Northern California Region (KPNC), Research Program on Genes, Environment and Health (RPGEH) (detailed description of the cohort and study design can be found in dbGaP, Study Accession: phs000674.v1.p1). Genome-wide genotyping was targeted for this cohort to enable large-scale genome-wide association studies by linkage to comprehensive longitudinal clinical data derived from extensive KPNC electronic health record databases. The cohort is multi-ethnic, with 20% minority representation (African American, East Asian, and Latino or mixed), and the remaining 80% nonHispanic white. For this project, four ethnic-specific arrays were designed based on the Affymetrix Axiom Genotyping System (Hoffmann et al. 2011a,b). The genotyping assay experiment took place over a 14-month period and to our knowledge, is the single largest genotyping experiment to date, producing .70 billion genotypes. The magnitude of the experiment, in conjunction with the long duration and simultaneous high throughput, required new protocols for assuring quality control (QC) during the assays and new genotyping strategies in postassay data analysis.Samp...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.