Evolution of supramolecular chirality from self-assembly of achiral compounds and control over its handedness is closely related to the evolution of life and development of supramolecular materials with desired handedness. Here we report a system where the entire process of induction, control and locking of supramolecular chirality can be manipulated by light. Combination of triphenylamine and diacetylene moieties in the molecular structure allows photoinduced self-assembly of the molecule into helical aggregates in a chlorinated solvent by visible light and covalent fixation of the aggregate via photopolymerization by ultraviolet light, respectively. By using visible circularly polarized light, the supramolecular chirality of the resulting aggregates is selectively and reversibly controlled by its rotational direction, and the desired supramolecular chirality can be arrested by irradiation with ultraviolet circularly polarized light. This methodology opens a route to ward the formation of supramolecular chiral conducting nanostructures from the self-assembly of achiral molecules.
A novel highly efficient ionic electro‐optic quinolinium single crystals for THz wave applications is reported. Acentric quinolinium derivatives, HMQ‐T (2‐(4‐hydroxy‐3‐methoxystyryl)‐1‐methylquinolinium 4‐methylbenzenesulfonate) and HMQ‐MBS (2‐(4‐hydroxy‐3‐methoxystyryl)‐1‐methylquinolinium 4‐methoxybenzenesulfonate) exhibit high order parameters cos3θp = 0.92 and cos3θp = 1.0, respectively, as well as a large macroscopic optical nonlinearity, which is in the range of the benchmark stilbazolium DAST (N,N‐dimethylamino‐N’‐methylstilbazolium 4‐methylbenzenesulfonate) and phenolic polyene OH1 (2‐(3‐(4‐hydroxystyryl)‐5,5‐dimethylcyclohex‐2‐enylidene)malononitrile) crystals. As‐grown unpolished bulk HMQ‐T crystals with a side length of about 6 mm and thickness of 0.56 mm exhibit 3.1 times higher THz generation efficiency than 0.37 mm thick OH1 crystals and about 8.4 times higher than 1 mm thick inorganic standard ZnTe crystals at the near‐infrared fundamental wavelength of 836 nm. Therefore, HMQ crystals with high order parameter obviously have a very high potential for high power THz‐wave generation and its applications.
Carbon dioxides (CO(2)) emitted from large-scale coal-fired power stations or industrial manufacturing plants have to be properly captured to minimize environmental side effects. From results of ab initio calculations using plane waves [PAW-PBE] and localized atomic orbitals [ONIOM(wB97X-D/6-31G*:AM1)], we report strong CO(2) adsorption on boron antisite (B(N)) in boron-rich boron nitride nanotube (BNNT). We have identified two adsorption states: (1) A linear CO(2) molecule is physically adsorbed on the B(N), showing electron donation from the CO(2) lone-pair states to the B(N) double-acceptor state, and (2) the physisorbed CO(2) undergoes a carboxylate-like structural distortion and C═O π-bond breaking due to electron back-donation from B(N) to CO(2). The CO(2) chemisorption energy on B(N) is almost independent of tube diameter and, more importantly, higher than the standard free energy of gaseous CO(2) at room temperature. This implies that boron-rich BNNT could capture CO(2) effectively at ambient conditions.
The introduction of an o-carborane cage into the triarylborane significantly enhances the Lewis acidity of the boron atom leading to large increase in fluoride ion affinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.