channels are uniquely positioned to act as neuromodulatory control points for tuning hippocampal theta (4–12 Hz) and gamma (25 Hz) oscillations, oscillations which are thought to have importance for organization of information flow. contributes to neuronal membrane resonance and resting membrane potential, and is modulated by second messengers. We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells), contained type-appropriate isoforms of . Our model demonstrated that modulation of pyramidal and basket allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal also controlled cross-frequency coupling (CFC) and allowed shifting gamma generation towards particular phases of the theta cycle, effected via 's ability to set pyramidal excitability. Our model predicts that in vivo neuromodulatory control of allows flexibly controlling CFC and the timing of gamma discharges at particular theta phases.
This study examined whether peripheral vision reaction time (PVRT) in patients with mild traumatic brain injury (mTBI) correlated with white matter abnormalities in centroaxial structures and impairments in neuropsychological testing. Within 24 h after mTBI, crossed reaction times (CRT), uncrossed reaction times (URT), and crossed-uncrossed difference (CUD) were measured in 23 patients using a laptop computer that displayed visual stimuli predominantly to either the left or the right visual field of the retina. The CUD is a surrogate marker of the interhemispheric transfer time (ITT). Within 7 days after the injury, patients received a diffusion tensor-MRI (DTI) scan and a battery of neuropsychological tests. Nine uninjured control subjects received similar testing. Patients 18-50 years of age were included if they had a post-resuscitation Glasgow Coma Scale >13 and an injury mechanism compatible with mTBI. Healthy controls were either age- and gender-matched family members of the TBI patients or healthy volunteers. CUD deficits >2 standard deviations (SD) were seen in 40.9% of patients. The CUD of injured patients correlated with mean diffusivity (MD) (p < 0.001, ρ = -0.811) in the posterior corpus callosum. Patients could be stratified on the basis of CUD on the Stroop 1, Controlled Oral Word Association Test (COWAT), and the obsessive-compulsive component of the Basic Symptom Inventory tests. These studies suggest that the PVRT indirectly measures white matter integrity in the posterior corpus callosum, a brain region frequently damaged by mTBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.