Background:Functional microRNAs (miRNAs) in exosomes have been recognised as potential stable biomarkers in cancers. The aim of this study is to identify specific miRNAs in exosome as serum biomarkers for the early detection of recurrence in human colorectal cancer (CRC).Methods:Serum samples were sequentially obtained from six patients with and without recurrent CRC. The miRNAs were purified from exosomes, and miRNA microarray analysis was performed. The miRNA expression profiles and copy number aberrations were explored using microarray and array CGH analyses in 124 CRC tissues. Then, we validated exosomal miRNAs in 2 serum sample sets (90 and 209 CRC patients) by quantitative real-time RT–PCR.Results:Exosomal miR-17-92a cluster expression level in serum was correlated with the recurrence of CRC. Exosomal miR-19a expression levels in serum were significantly increased in patients with CRC as compared with healthy individuals with gene amplification. The CRC patients with high exosomal miR-19a expression showed poorer prognoses than the low expression group (P<0.001).Conclusions:Abundant expression of exosomal miR-19a in serum was identified as a prognostic biomarker for recurrence in CRC patients.
Understanding intratumor heterogeneity is clinically important because it could cause therapeutic failure by fostering evolutionary adaptation. To this end, we profiled the genome and epigenome in multiple regions within each of nine colorectal tumors. Extensive intertumor heterogeneity is observed, from which we inferred the evolutionary history of the tumors. First, clonally shared alterations appeared, in which C>T transitions at CpG site and CpG island hypermethylation were relatively enriched. Correlation between mutation counts and patients’ ages suggests that the early-acquired alterations resulted from aging. In the late phase, a parental clone was branched into numerous subclones. Known driver alterations were observed frequently in the early-acquired alterations, but rarely in the late-acquired alterations. Consistently, our computational simulation of the branching evolution suggests that extensive intratumor heterogeneity could be generated by neutral evolution. Collectively, we propose a new model of colorectal cancer evolution, which is useful for understanding and confronting this heterogeneous disease.
BackgroundPredictive biomarkers for the recurrence of hepatocellular carcinoma (HCC) have great benefit in the selection of treatment options, including liver transplantation (LT), for HCC. The purpose of this study was to identify specific microRNAs (miRs) in exosomes from the serum of patients with recurrent HCC and to validate these molecules as novel biomarkers for HCC recurrence.MethodsWe employed microarray-based expression profiling of miRs derived from exosomes in the serum of HCC patients to identify a biomarker that distinguishes between patients with and without HCC recurrence after LT. This was followed by the validation in a separate cohort of 59 HCC patients who underwent living related LT. The functions and potential gene targets of the recurrence-specific miRs were analysed using a database, clinical samples and HCC cell lines.ResultsWe found that miR-718 showed significantly different expression in the serum exosomes of HCC cases with recurrence after LT compared with those without recurrence. Decreased expression of miR-718 was associated with HCC tumour aggressiveness in the validated cohort series. We identified HOXB8 as a potential target gene of miR-718, and its upregulation was associated with poor prognosis.ConclusionCirculating miRs in serum exosomes have potential as novel biomarkers for predicting HCC recurrence.
Early detection and treatment are of vital importance to the successful eradication of various cancers, and development of economical and non-invasive novel cancer screening systems is critical. Previous reports using canine scent detection demonstrated the existence of cancer-specific odours. However, it is difficult to introduce canine scent recognition into clinical practice because of the need to maintain accuracy. In this study, we developed a Nematode Scent Detection Test (NSDT) using Caenorhabditis elegans to provide a novel highly accurate cancer detection system that is economical, painless, rapid and convenient. We demonstrated wild-type C. elegans displayed attractive chemotaxis towards human cancer cell secretions, cancer tissues and urine from cancer patients but avoided control urine; in parallel, the response of the olfactory neurons of C. elegans to the urine from cancer patients was significantly stronger than to control urine. In contrast, G protein α mutants and olfactory neurons-ablated animals were not attracted to cancer patient urine, suggesting that C. elegans senses odours in urine. We tested 242 samples to measure the performance of the NSDT, and found the sensitivity was 95.8%; this is markedly higher than that of other existing tumour markers. Furthermore, the specificity was 95.0%. Importantly, this test was able to diagnose various cancer types tested at the early stage (stage 0 or 1). To conclude, C. elegans scent-based analyses might provide a new strategy to detect and study disease-associated scents.
Fructose-1,6-bisphosphatase (FBP1), the rate-limiting enzyme in gluconeogenesis, is reduced in expression in certain cancers where it has been hypothesized to act as a tumor suppressor, including in hepatocellular carcinoma (HCC). Here, we report functional evidence supporting this hypothesis, providing a preclinical rationale to develop FBP1 as a therapeutic target for HCC treatment. Three independent cohorts totaling 594 cases of HCC were analyzed to address clinical significance. Lower FBP1 expression associated with advanced tumor stage, poor overall survival, and higher tumor recurrence rates. In HCC cell lines, where endogenous FBP1 expression is low, engineering its ectopic overexpression inhibited tumor growth and intracellular glucose uptake by reducing aerobic glycolysis. In patient specimens, promoter methylation and copy-number loss of FBP1 were independently associated with decreased FBP1 expression. Similarly, FBP1 downregulation in HCC cell lines was also associated with copy-number loss. HCC specimens exhibiting low expression of FBP1 had a highly malignant phenotype, including large tumor size, poor differentiation, impaired gluconeogenesis, and enhanced aerobic glycolysis. The effects of FBP1 expression on prognosis and glucose metabolism were confirmed by gene set enrichment analysis. Overall, our findings established that FBP1 downregulation in HCC contributed to tumor progression and poor prognosis by altering glucose metabolism, and they rationalize further study of FBP1 as a prognostic biomarker and therapeutic target in HCC patients. Cancer Res; 76(11); 3265-76. Ó2016 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.