Although MRI has become widely used in small animal practice, little is known about the validity of advanced MRI techniques such as diffusion-weighted imaging and diffusion tensor imaging. The aim of this retrospective analytical observational study was to investigate the characteristics of diffusion parameters, that is the apparent diffusion coefficient and fractional anisotropy, in dogs with a solitary intracranial meningioma or histiocytic sarcoma. Dogs were included based on the performance of diffusion MRI and histological confirmation. Statistical analyses were performed to compare apparent diffusion coefficient and fractional anisotropy for the two types of tumor in the intra- and peritumoral regions. Eleven cases with meningioma and six with histiocytic sarcoma satisfied the inclusion criteria. Significant differences in apparent diffusion coefficient value (× 10 mm /s) between meningioma vs. histiocytic sarcoma were recognized in intratumoral small (1.07 vs. 0.76) and large (1.04 vs. 0.77) regions of interest, in the peritumoral margin (0.93 vs. 1.08), and in the T2 high region (1.21 vs. 1.41). Significant differences in fractional anisotropy values were found in the peritumoral margin (0.29 vs. 0.24) and the T2 high region (0.24 vs. 0.17). The current study identified differences in measurements of apparent diffusion coefficient and fractional anisotropy for meningioma and histiocytic sarcoma in a small sample of dogs. In addition, we observed that all cases of intracranial histiocytic sarcoma showed leptomeningeal enhancement and/or mass formation invading into the sulci in the contrast study. Future studies are needed to determine the sensitivity of these imaging characteristics for differentiating between these tumor types.
BackgroundEpilepsy is the most common neurological disease in veterinary practice. However, contrary to human medicine, epilepsy classification in veterinary medicine had not been clearly defined until recently. A number of reports on canine epilepsy have been published, reflecting in part updated proposals from the human epilepsy organization, the International League Against Epilepsy. In 2015, the International Veterinary Epilepsy Task Force (IVETF) published a consensus report on the classification and definition of canine epilepsy. The purpose of this retrospective study was to investigate the etiological distribution, survival time of dogs with idiopathic epilepsy (IdE) and structural epilepsy (StE), and risk factors for survival time, according to the recently published IVETF classification. We investigated canine cases with epilepsy that were referred to our teaching hospital in Japan during the past 10 years, and which encompassed a different breed population from Western countries.ResultsA total of 358 dogs with epilepsy satisfied our etiological study criteria. Of these, 172 dogs (48 %) were classified as IdE and 76 dogs (21 %) as StE. Of these dogs, 100 dogs (consisting of 65 with IdE and 35 with StE) were included in our survival study. Median survival time from the initial epileptic seizure in dogs with IdE and StE was 10.4 and 4.5 years, respectively. Median lifespan of dogs with IdE and StE was 13.5 and 10.9 years, respectively. Multivariable analysis demonstrated that risk factors for survival time in IdE were high seizure frequency (≥0.3 seizures/month) and focal epileptic seizures.ConclusionsFocal epileptic seizures were identified as a risk factor for survival time in IdE. Clinicians should carefully differentiate seizure type as it is difficult to identify focal epileptic seizures. With good seizure control, dogs with IdE can survive for nearly the same lifespan as the general dog population. Our results using the IVETF classification are similar to previous studies, although some features were noted in our Japanese canine population (which was composed of mainly small-breed dogs), including a longer lifespan in dogs with epilepsy and a larger percentage of meningoencephalomyelitis of unknown origin in dogs with StE.
Meningiomas are the most common intracranial tumor in dogs and cats, and their surgical resection is often performed because they are present on the brain surface. Typical meningiomas show comparatively characteristic magnetic resonance imaging findings that lead to clinical diagnosis; however, it is necessary to capture not only macroscopic changes but also microstructural changes to devise a strategy for surgical resection and/or quality of removal. To visualize such microstructural changes, diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) have been used in human medicine. The aim of this retrospective study was to investigate the different characteristics of the apparent diffusion coefficient (ADC) from DWI and fractional anisotropy (FA) from DTI of meningioma between dogs and cats. Statistical analyses were performed to compare ADC and FA values between the intratumoral or peritumoral regions and normal-appearing white matter (NAWM) among 13 dogs (13 lesions, but 12 each in ADC and FA analysis) and six cats (seven lesions). The NAWM of cats had a significantly lower ADC and higher FA compared to dogs. Therefore, for a comparison between dogs and cats, we used ADC and FA ratios that were calculated by dividing the subject (intra- or peritumoral) ADC and FA values by those of NAWM on the contralateral side. Regarding the intratumoral region, feline meningiomas showed a significantly lower ADC ratio and higher FA ratio than canine meningiomas. This study suggested that ADC and FA may be able to distinguish a meningioma that is solid and easy to detach, like as typical feline meningiomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.