Background and objectives Alport syndrome comprises a group of inherited heterogeneous disorders involving CKD, hearing loss, and ocular abnormalities. Autosomal dominant Alport syndrome caused by heterozygous mutations in collagen 4A3 and/or collagen 4A4 accounts for ,5% of patients. However, the clinical, genetic, and pathologic backgrounds of patients with autosomal dominant Alport syndrome remain unclear.Design, setting, participants, & measurements We conducted a retrospective analysis of 25 patients with genetically proven autosomal dominant Alport syndrome and their family members (a total of 72 patients) from 16 unrelated families. Patients with suspected Alport syndrome after pathologic examination who were referred from anywhere in Japan for genetic analysis from 2006 to 2015 were included in this study. Clinical, laboratory, and pathologic data were collected from medical records at the point of registration for genetic diagnosis. Genetic analysis was performed by targeted resequencing of 27 podocyte-related genes, including Alport-related collagen genes, to make a diagnosis of autosomal dominant Alport syndrome and identify modifier genes or double mutations. Clinical data were obtained from medical records.Results The median renal survival time was 70 years, and the median age at first detection of proteinuria was 17 years old. There was one patient with hearing loss and one patient with ocular lesion. Among 16 patients who underwent kidney biopsy, three showed FSGS, and seven showed thinning without lamellation of the glomerular basement membrane. Five of 13 detected mutations were reported to be causative mutations for autosomal recessive Alport syndrome in previous studies. Two families possessed double mutations in both collagen 4A3 and collagen 4A4, but no modifier genes were detected among the other podocyte-related genes.Conclusions The renal phenotype of autosomal dominant Alport syndrome was much milder than that of autosomal recessive Alport syndrome or X-linked Alport syndrome in men. It may, thus, be difficult to make an accurate diagnosis of autosomal dominant Alport syndrome on the basis of clinical or pathologic findings. No modifier genes were identified among the known podocyte-related genes.
Purpose: Phenotypic overlap exists among type III Bartter syndrome (BS), Gitelman syndrome (GS), and pseudo-BS/GS (p-BS/ GS), which are clinically difficult to distinguish. We aimed to clarify the differences between these diseases, allowing accurate diagnosis based on their clinical features. Methods:A total of 163 patients with genetically defined type III BS (n = 30), GS (n = 90), and p-BS/GS (n = 43) were included. Age at diagnosis, sex, body mass index, estimated glomerular filtration rate, and serum and urine electrolyte concentrations were determined. Results:Patients with p-BS/GS were significantly older at diagnosis than those with type III BS and GS. Patients with p-BS/GS included a significantly higher percentage of women and had a lower body mass index and estimated glomerular filtration rate than did patients with GS. Although hypomagnesemia and hypocalciuria were predominant biochemical findings in patients with GS, 17 and 23% of patients with type III BS and p-BS/GS, respectively, also showed these abnormalities. Of patients with type III BS, GS, and p-BS/GS, 40, 12, and 63%, respectively, presented with chronic kidney disease.
IntroductionGitelman syndrome (GS) is a tubulopathy exhibited by salt loss. GS cases are most often diagnosed by chance blood test. Aside from that, some cases are also diagnosed from tetanic symptoms associated with hypokalemia and/or hypomagnesemia or short stature. As for complications, thyroid dysfunction and short stature are known, but the incidence rates for these complications have not yet been elucidated. In addition, no genotype–phenotype correlation has been identified in GS.MethodsWe examined the clinical characteristics and genotype–phenotype correlation in genetically proven GS cases with homozygous or compound heterozygous variants in SLC12A3 (n = 185).ResultsIn our cohort, diagnostic opportunities were by chance blood tests (54.7%), tetany (32.6%), or short stature (7.2%). Regarding complications, 16.3% had short stature, 13.7% had experienced febrile convulsion, 4.3% had thyroid dysfunction, and 2.5% were diagnosed with epilepsy. In one case, QT prolongation was detected. Among 29 cases with short stature, 10 were diagnosed with growth hormone (GH) deficiency and GH replacement therapy started. Interestingly, there was a strong correlation in serum magnesium levels between cases with p.Arg642Cys and/or p.Leu858His and cases without these variants, which are mutational hotspots in the Japanese population (1.76 mg/dl vs. 1.43 mg/dl, P < 0.001).ConclusionThis study has revealed, for the first time, clinical characteristics in genetically proven GS cases in the Japanese population, including prevalence of complications. Patients with hypokalemia detected by chance blood test should have gene tests performed. Patients with GS need attention for developing extrarenal complications, such as short stature, febrile convulsion, thyroid dysfunction, epilepsy, or QT prolongation. It was also revealed for the first time that hypomagnesemia was not severe in some variants in SLC12A3.
IntroductionX-linked Alport syndrome (XLAS) is a hereditary disease characterized by progressive nephritis, hearing loss, and ocular abnormalities. Affected male patients usually progress to end-stage renal disease in early or middle adulthood, and disease severity is strongly correlated with genotype. However, the clinical course in female patients has rarely been reported.MethodsWe conducted a retrospective analysis of females with genetically proven XLAS (n = 275) and their affected female family members (n = 61) from 179 Japanese families. Patients suspected to have Alport syndrome from pathologic findings or a family history who were referred from anywhere in Japan for genetic diagnosis between 2006–2015 were included in this study. Clinical and laboratory data were collected from medical records at the time of registration for genetic analysis.ResultsProteinuria was detected in 175 genetically proven patients (72.6%), and the median age for developing proteinuria was 7.0 years. Fifty-two of 336 patients developed end-stage renal disease with a median renal survival age of 65.0 years. No obvious genotype–phenotype correlation was observed. Additionally, targeted sequencing for podocyte-related genes in patients with severe phenotypes revealed no obvious variants considered to be modifier genes except for 1 patient with a COL4A3 gene variant.DiscussionThis study revealed that phenotypes in female XLAS patients may be severe, but genotype does not help to predict the disease severity. Clinicians must therefore pay careful attention to the clinical course and appropriate treatment in females with XLAS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.