During the ongoing coronavirus disease 2019 (Covid-19) pandemic, it is critical to ensure the safety of Covid-19 vaccines. We herein report a 51-year-old Japanese woman who developed acute-onset type 1 diabetes with diabetic ketoacidosis six weeks after receiving the first dose of a Covid-19 mRNA vaccine. Laboratory tests indicated exhaustion of endogenous insulin secretion, a positive result for insulin autoantibody, and latent thyroid autoimmunity. Human leukocyte antigen typing was homozygous for DRB1*09:01-DQB1*03: 03 haplotypes. This case suggests that Covid-19 vaccination can induce type 1 diabetes in some individuals with a genetic predisposition.
Fulminant type 1 diabetes is characterized by a rapid progression of insulin deficiency triggered by viral infection. Here, we report a case of a 45‐year‐old Japanese woman with fulminant type 1 diabetes that developed 8 days after receiving messenger ribonucleic acid vaccine against severe acute respiratory syndrome coronavirus 2. She had been healthy and had no symptoms suggestive of viral infection before the vaccination. Laboratory tests showed exhaustion of insulin secretion and negative results for islet autoantibodies. Human leukocyte antigen genotype analysis showed the DRB1*04:05 and DQB1*04:01 alleles. This is the first case report of new‐onset fulminant type 1 diabetes after severe acute respiratory syndrome coronavirus 2 vaccination, and suggests that a severe acute respiratory syndrome coronavirus 2 vaccine might trigger the onset of fulminant type 1 diabetes in susceptible individuals. However, a causal relationship remains to be identified, and further studies are required to determine the incidence of such cases.
BackgroundLipopolysaccharide (LPS)-binding protein (LBP) is an acute-phase reactant that mediates immune responses triggered by LPS. Recent evidence indicates the association of circulating LBP levels with obesity, diabetes, and cardiovascular diseases. In this study, we aimed to investigate the relationship between serum LBP levels and arterial stiffness in patients with type 2 diabetes.MethodsA total of 196 patients with type 2 diabetes, including 101 men and 95 women, were enrolled in this cross-sectional study. Fasting serum LBP levels were determined by enzyme-linked immunosorbent assay. Arterial stiffness was assessed by measuring the aortic pulse wave velocity (PWV).ResultsThe mean values of serum LBP and aortic PWV were 18.2 μg/mL and 1194 cm/s, respectively. Serum LBP levels were positively correlated with body mass index, triglycerides, high-sensitivity C-reactive protein, and insulin resistance index and were negatively correlated with high-density lipoprotein cholesterol. They were, however, not significantly correlated with aortic PWV in univariate analyses. Multivariate analysis revealed that serum LBP levels were independently and positively associated with aortic PWV (β = 0.135, p = 0.026) after adjusting for age, sex, body mass index, albumin, high-sensitivity C-reactive protein, and other cardiovascular risk factors. Further analyses revealed that the impact of serum LBP levels on aortic PWV was modified by sex, and the association between serum LBP levels and aortic PWV was found to be significant only in men.ConclusionsSerum LBP levels are associated with arterial stiffness, independent of obesity and traditional cardiovascular risk factors, especially in men with type 2 diabetes. This study indicates a potential role of the LPS/LBP-induced innate immunity in the development and progression of arterial stiffness in type 2 diabetes.
BackgroundOmentin and adiponectin are among the anti-inflammatory and anti-atherogenic adipokines that have potentially beneficial effects on cardiovascular disorders. Recent studies indicate a paradoxical relationship between adiponectin and cardiovascular mortality across many clinical settings including type 2 diabetes. In this study, we characterized the clinical features of type 2 diabetes patients with increased adiponectin levels and examined the association between omentin and atherosclerosis in those patients.MethodsThe subjects were 413 patients with type 2 diabetes. Fasting plasma omentin and total adiponectin levels were measured by enzyme-linked immunosorbent assay. The intima-media thickness (IMT) of the common carotid artery was measured by ultrasonography. The subjects were stratified according to the median value of plasma adiponectin.ResultsIn high-adiponectin group, omentin levels were higher, while IMT tended to be greater than those in low-adiponectin group. The high-adiponectin group also exhibited older age, higher systolic blood pressure, lower kidney function, body mass index, and insulin resistance index compared to the low-adiponectin group. Multivariate analysis revealed that omentin levels were independently and negatively associated with IMT in high-adiponectin group, but not in low-adiponectin group, after adjusting for adiponectin levels and traditional cardiovascular risk factors. On the other hand, adiponectin levels were not significantly associated with IMT in either group.ConclusionsPlasma omentin levels are inversely associated with IMT in type 2 diabetes patients with increased adiponectin levels and multiple cardiovascular risk factors. This study suggests a protective role of omentin against atherosclerosis in type 2 diabetes patients, which is potentially influenced by adiponectin level and cardiovascular risk status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.