In this paper, a method of calculating the mean channel capacity based on S-parameter of MIMO (Multiple-Input Multiple-Output) antenna is proposed. This method exploits the correlation matrix calculated from the antenna S-parameter matrix, and offers highly accurate estimates of the mean channel capacity without dependence on SNR (Signal-to-Noise Ratio). The numerical and experimental results revealed that the proposed method can calculate the channel capacity with fair accuracy independent of the number and spacing of the antenna elements if the radiation efficiency is sufficiently high.
This paper proposes a method that uses bistatic Multiple-Input Multiple-Output (MIMO) radar to locate living-bodies. In this method, directions of living-bodies are estimated by the MUltiple SIgnal Classification (MUSIC) method at the transmitter and receiver, where the Fourier transformed virtual Single-Input Multiple-Output (SIMO) channel matrix is used. Body location is taken as the intersection of the two directions. The proposal uses a single frequency and so has a great advantage over conventional methods that need a wide frequency band. Also, this method can be used in multipath-rich environments such as indoors. An experiment is performed in an indoor environment, and the MIMO channels yielded by various subject numbers and positions are measured. The result indicates that the proposed method can estimate multiple living-body locations with high accuracy, even in multipath environments.
Since the evaluation of multiple-input multipleoutput (MIMO) antennas requires full information of its complex radiation patterns as well as propagation channels, its design procedures and analyses are cumbersome and complicated in general. In this paper, the accuracy of a closed-form capacity formula for mean MIMO channel capacity is investigated, where the S-parameter of the antenna is needed but the antenna must be lossless. Numerical analyses show that this formula gives mean channel capacity with a good accuracy when the signal-to-noise ratio is sufficiently high.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.