We combine Spitzer and ground-based KMTNet microlensing observations to identify and precisely measure an Earth-mass (1.43 −0.46 kpc, it is the third consecutive case among the Spitzer "Galactic distribution" planets toward the Galactic bulge that lies in the Galactic disk as opposed to the bulge itself, hinting at a skewed distribution of planets. Together with previous microlensing discoveries, the seven Earth-size planets orbiting the ultracool dwarf TRAPPIST-1, and the detection of disks around young brown dwarfs, OGLE-2016-BLG-1195Lb suggests that such planets might be common around ultracool dwarfs. It therefore sheds light on the formation of both ultracool dwarfs and planetary systems at the limit of low-mass protoplanetary disks.
We analyze an ensemble of microlensing events from the 2015 Spitzer microlensing campaign, all of which were densely monitored by ground-based high-cadence survey teams. The simultaneous observations from Spitzer and the ground yield measurements of the microlensing parallax vector p E , from which compact constraints on the microlens properties are derived, including 25% uncertainties on the lens mass and distance. With the current sample, we demonstrate that the majority of microlenses are indeed in the mass range of M dwarfs. The planet sensitivities of all 41 events in the sample are calculated, from which we provide constraints on the planet distribution function. In particular, assuming a planet distribution function that is uniform in q log , where q is the planet-to-star mass ratio, we find a 95% upper limit on the fraction of stars that host typical microlensing planets of 49%, which is consistent with previous studies. Based on this planet-free sample, we develop the methodology to statistically study the Galactic distribution of planets using microlensing parallax measurements. Under the assumption that the planet distributions are the same in the bulge as in the disk, we predict that ∼1/3 of all planet detections from the microlensing campaigns with Spitzer should be in the bulge. This prediction will be tested with a much larger sample, and deviations from it can be used to constrain the abundance of planets in the bulge relative to the disk.
Current microlensing surveys are sensitive to free-floating planets down to Earth-mass objects. All published microlensing events attributed to unbound planets were identified based on their short timescale (below two days), but lacked an angular Einstein radius measurement (and hence lacked a significant constraint on the lens mass). Here, we present the discovery of a Neptune-mass free-floating planet candidate in the ultrashort (t E = 0.320 ± 0.003 days) microlensing event OGLE-2016-BLG-1540. The event exhibited strong finite-source effects, which allowed us to measure its angular Einstein radius of θ E = 9.2±0.5 µas. There remains, however, a degeneracy between the lens mass and distance. The combination of the source proper motion and source-lens relative proper motion measurements favors a Neptune-mass lens located in the Galactic disk. However, we cannot rule out that the lens is a Saturn-mass object belonging to the bulge population. We exclude stellar companions up to ∼ 15 au.
We present microlensing events in the 2015 Korea Microlensing Telescope Network (KMTNet) data and our procedure for identifying these events. In particular, candidates were detected with a novel "completed event" microlensing event-finder algorithm. The algorithm works by making linear fits to a (t 0 , t eff , u 0 ) grid of point-lens microlensing models. This approach is rendered computationally efficient by restricting u 0 to just two values (0 and 1), which we show is quite adequate. The implementation presented here is specifically tailored to the commission-year character of the 2015 data, but the algorithm is quite general and has already been applied to a completely different (non-KMTNet) data set. We outline expected improvements for 2016 and future KMTNet data. The light curves of the 660 "clear microlensing" and 182 "possible microlensing" events that were found in 2015 are presented along with our policy for their public release.
Recently, the discovery of a Venus-mass planet orbiting a brown-dwarf host in a binary system was reported from the analysis of the microlensing event OGLE-2013-BLG-0723. We reanalyze the event considering the possibility of other interpretations. From this, we find a new solution where the lens is composed of 2 bodies in contrast to the 3-body solution of the previous analysis. The new solution better explains the observed light curve than the previous solution with ∆χ 2 ∼ 202, suggesting that the new solution is a correct model for the event. From the estimation of the physical parameters based on the new interpretation, we find that the lens system is composed of two low-mass stars with ∼ 0.2 M ⊙ and ∼ 0.1 M ⊙ and located at a distance ∼ 3 kpc. The fact that the physical parameters correspond to those of the most common lens population located at a distance with a large lensing probability further supports the likelihood of the new interpretation. Considering that two dramatically different solutions can approximately explain the observed light curve, the event suggests the need of carefully testing all possible lens-system geometries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.