A combination of structural, thermodynamic, and transient kinetic data on wild-type and mutant Anabaena vegetative cell ferredoxins has been used to investigate the nature of the protein-protein interactions leading to electron transfer from reduced ferredoxin to oxidized ferredoxin:NADP+ reductase (FNR). We have determined the reduction potentials of wild-type vegetative ferredoxin, heterocyst ferredoxin, and 12 site-specific mutants at seven surface residues of vegetative ferredoxin, as well as the one- and two-electron reduction potentials of FNR, both alone and in complexes with wild-type and three mutant ferredoxins. X-ray crystallographic structure determinations have been carried out for six of the ferredoxin mutants. None of the mutants showed significant structural changes in the immediate vicinity of the [2Fe-2S] cluster, despite large decreases in electron-transfer reactivity (for E94K and S47A) and sizable increases in reduction potential (80 mV for E94K and 47 mV for S47A). Furthermore, the relatively small changes in Calpha backbone atom positions which were observed in these mutants do not correlate with the kinetic and thermodynamic properties. In sharp contrast to the S47A mutant, S47T retains electron-transfer activity, and its reduction potential is 100 mV more negative than that of the S47A mutant, implicating the importance of the hydrogen bond which exists between the side chain hydroxyl group of S47 and the side chain carboxyl oxygen of E94. Other ferredoxin mutations that alter both reduction potential and electron-transfer reactivity are E94Q, F65A, and F65I, whereas D62K, D68K, Q70K, E94D, and F65Y have reduction potentials and electron-transfer reactivity that are similar to those of wild-type ferredoxin. In electrostatic complexes with recombinant FNR, three of the kinetically impaired ferredoxin mutants, as did wild-type ferredoxin, induced large (approximately 40 mV) positive shifts in the reduction potential of the flavoprotein, thereby making electron transfer thermodynamically feasible. On the basis of these observations, we conclude that nonconservative mutations of three critical residues (S47, F65, and E94) on the surface of ferredoxin have large parallel effects on both the reduction potential and the electron-transfer reactivity of the [2Fe-2S] cluster and that the reduction potential changes are not the principal factor governing electron-transfer reactivity. Rather, the kinetic properties are most likely controlled by the specific orientations of the proteins within the transient electron-transfer complex.
The ability to overexpress [2Fe-2S] ferredoxins in Escherichia coli has opened up exciting research opportunities. High-resolution x-ray structures have been determined for the wild-type ferredoxins produced by the vegatative and heterocyst forms of Anabaena strain 7120 (in their oxidized states), and these have been compared to structural information derived from multidimensional, multinuclear NMR spectroscopy. The electron delocalization in in these proteins in their oxidized and reduced states has been studied by 1H, 2H, 13C, and 15N NMR spectroscopy. Site-directed mutagenesis has been used to prepare variants of these ferredoxins. Mutants (over 50) of the vegetative ferredoxin have been designed to explore questions about cluster assembly and stabilization and to determine which residues are important for recognition and electron transfer to the redox partner Anabaena ferredoxin reductase. The results have shown that serine can replace cysteine at each of the four cluster attachment sites and still support cluster assembly. Electron transfer has been demonstrated with three of the four mutants. Although these mutants are less stable than the wild-type ferredoxin, it has been possible to determine the x-ray structure of one (C49S) and to characterize all four by EPR and NMR. Mutagenesis has identified residues 65 and 94 of the vegetative ferredoxin as crucial to interaction with the reductase. Three-dimensional models have been obtained by x-ray diffraction analysis for several additional mutants: T48S, A50V, E94K (four orders of magnitude less active than wild type in functional assays), and A43S/A45S/T48S/A50N (quadruple mutant).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.