We have investigated the decomposition path and reversibility of Ca(BH4)2 and Ca(BH4)2 + MgH2 composite using X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, and Raman spectroscopy. Formation of CaB6 during dehydrogenation of both systems was confirmed for the first time. CaB6 appears as broad peaks in X-ray diffraction data, but Raman spectroscopy unambiguously captures the existence of CaB6. Reversibility of catalyzed Ca(BH4)2 was previously reported, and here we demonstrate reversibility of Ca(BH4)2 + MgH2 composite. Dehydrogenated product of Ca(BH4)2 + MgH2 is composed of CaH2, CaB6, and Mg. About 60% reversibility was achieved after rehydrogenation for 24 h under 90 bar of hydrogen pressure at 350 °C even without the help of catalysts, which makes a good contrast with the case of pure Ca(BH4)2 where almost negligible rehydrogenation occurs under the same conditions. To understand the difference, the role of Mg in rehydrogenation is worth further investigation. Formation of CaB6 seems critical in the reversibility of Ca(BH4)2 containing systems; the case of other borohydrides is compared.
We have developed a fast solid state Li ion conductor composed of LiBH4 and SiO2 by means of interface engineering. A composite of LiBH4-SiO2 was simply synthesized by high energy ball-milling, and two types of SiO2 (MCM-41 and fumed silica) having different specific surface areas were used to evaluate the effect of the LiBH4/SiO2 interface on the ionic conductivity enhancement. The ionic conductivity of the ball-milled LiBH4-MCM-41 and LiBH4-fumed silica mixture is as high as 10(-5) S cm(-1) and 10(-4) S cm(-1) at room temperature, respectively. In particular, the conductivity of the latter is comparable to the LiBH4 melt-infiltrated into MCM-41. The conductivities of the LiBH4-fumed silica mixtures at different mixing ratios were analyzed employing a continuum percolation model, and the conductivity of the LiBH4/SiO2 interface layer is estimated to be 10(5) times higher than that of pure bulk LiBH4. The result highlights the importance of the interface and indicates that significant enhancement in ionic conductivity can be achieved via interface engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.