Interest in peste des petits ruminants virus (PPRV) has been stimulated by recent changes in its host and geographic distribution. For this study, biological specimens were collected from camels, sheep, and goats clinically suspected of having PPRV infection in Sudan during 2000–2009 and from sheep soon after the first reported outbreaks in Morocco in 2008. Reverse transcription PCR analysis confirmed the wide distribution of PPRV throughout Sudan and spread of the virus in Morocco. Molecular typing of 32 samples positive for PPRV provided strong evidence of the introduction and broad spread of Asian lineage IV. This lineage was defined further by 2 subclusters; one consisted of camel and goat isolates and some of the sheep isolates, while the other contained only sheep isolates, a finding with suggests a genetic bias according to the host. This study provides evidence of the recent spread of PPRV lineage IV in Africa.
Background Investigations of Culicoides fauna, including inventories, were carried out in Morocco at different periods after the country had faced major bluetongue and African horse sickness outbreaks. However, no comprehensive reference publication has provided a clear overview of the Culicoides species diversity. This study reviewed available data on Culicoides biting midge species in Morocco from 1968 to 2015 (published and grey literature in French and English) in order to revise the current checklist, in light of state of the art taxonomic and systematic knowledge, and confirmed the checklist with morphological and molecular identifications of specimens collected from the region of Rabat. Methods Literature related to Culicoides collections in Morocco was collated. Authors were contacted to obtain raw data and additional information for the collections. Fresh Culicoides material was collected and examined from two sites around Rabat, the capital of Morocco. Each collected individual was examined and morphologically identified, if possible, to the species level. In addition, molecular identification was performed to separate closely related species, to confirm difficult morphological identifications and to confirm new species records. Results A total of 6121 individuals of Culicoides spp. were collected and analyzed and at least 17 species were identified: C. cataneii/C. gejgelensis, C. circumscriptus, C. fagineus, C. festivipennis, C. imicola, C. jumineri, C. kingi, C. longipennis, C. montanus, C. newsteadi, C. obsoletus, C. paolae, C. parotti, C. puncticollis, C. sahariensis, C. scoticus and C. subfagineus. Seven species were confirmed using phylogenetic analyses. Two new species records for Morocco are reported: C. paolae and C. subfagineus. Conclusions The Moroccan fauna of Culicoides now includes 54 valid species. Further work would certainly increase this total, as one of the clades we identified was not affiliated to any described and valid species.
Understanding the demographic history and genetic make-up of colonizing species is critical for inferring population sources and colonization routes. This is of main interest for designing accurate control measures in areas newly colonized by vector species of economically important pathogens. The biting midge Culicoides imicola is a major vector of orbiviruses to livestock. Historically, the distribution of this species was limited to the Afrotropical region. Entomological surveys first revealed the presence of C. imicola in the south of the Mediterranean basin by the 1970s. Following recurrent reports of massive bluetongue outbreaks since the 1990s, the presence of the species was confirmed in northern areas. In this study, we addressed the chronology and processes of C. imicola colonization in the Mediterranean basin. We characterized the genetic structure of its populations across Mediterranean and African regions using both mitochondrial and nuclear markers, and combined phylogeographical analyses with population genetics and approximate Bayesian computation. We found a west/east genetic differentiation between populations, occurring both within Africa and within the Mediterranean basin. We demonstrated that three of these groups had experienced demographic expansions in the Pleistocene, probably because of climate changes during this period. Finally, we showed that C. imicola could have colonized the Mediterranean basin in the Late Pleistocene or Early Holocene through a single event of introduction; however, we cannot exclude the hypothesis involving two routes of colonization. Thus, the recent bluetongue outbreaks are not linked to C. imicola colonization event, but rather to biological changes in the vector or the virus.
The role of the northward expansion of Culicoides imicola Kieffer in recent and unprecedented outbreaks of Culicoides-borne arboviruses in southern Europe has been a significant point of contention. We combined entomological surveys, movement simulations of air-borne particles, and population genetics to reconstruct the chain of events that led to a newly colonized French area nestled at the northern foot of the Pyrenees. Simulating the movement of air-borne particles evidenced frequent wind-transport events allowing, within at most 36 hours, the immigration of midges from north-eastern Spain and Balearic Islands, and, as rare events, their immigration from Corsica. Completing the puzzle, population genetic analyses discriminated Corsica as the origin of the new population and identified two successive colonization events within west-Mediterranean basin. Our findings are of considerable importance when trying to understand the invasion of new territories by expanding species.
Summary 1.The spread of vector-borne diseases into new areas, commonly attributed to environmental change or increased trade and travel, could be exacerbated if novel vector species in newly invaded areas spread infection beyond the range of traditional vectors. 2. By analysing the differential degree of overlap between the environmental envelopes for bluetongue, a devastating livestock disease, and its traditional (Afro-Asian) and potential new (Palearctic) midge vectors, we have implicated the latter in the recent dramatic northward spread of this disease into Europe. 3. The traditional vector of bluetongue virus, the Afro-Asian midge Culicoides imicola , was found to occur in warm (annual mean 12-20 ° C), thermally stable locations that were dry in summer (< 400 mm precipitation). The Palearctic C. obsoletus and C. pulicaris complexes were both found to occur in cooler (down to 7 ° C annual mean), thermally more variable and wetter (up to 700 mm summer precipitation) locations. 4. Of 501 recorded outbreaks from the 1998-2004 bluetongue epidemic in southern Europe, 40% fall outside the climate envelope of C. imicola , but within the species' envelopes of the C. obsoletus and C. pulicaris complexes. 5. The distribution in multivariate environmental space of bluetongue virus is closer to that of the Palaearctic vectors than it is to that of C. imicola . This suggests that Palearctic vectors now play a substantial role in transmission and have facilitated the spread of bluetongue into cooler, wetter regions of Europe. 6. Synthesis and applications . The risk to Northern Europe now depends on how much of the distributions of the widespread, abundant Palearctic midge vectors (the C. obsoletus and C. pulicaris complexes) bluetongue can occupy, perhaps determined by thermal constraints on viral replication. This was highlighted by the sudden appearance in summer 2006 of bluetongue virus at latitudes of more than 50 ° North -approximately 6 ° further North than previous outbreaks in southern Europe. Future surveillance for bluetongue and for related Culicoides -borne pathogens should include studies to record and explain the distributional patterns of all potential Palearctic vector species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.