Porphyrins play key roles in natural energy conversion systems, including photosynthesis and oxygen transport. Because of their chemical stability, unique optical properties and synthetic versatility, porphyrins are well suited as chemical sensors. One successful application is the use of platinum porphyrin (PtP) in pressure-sensitive paint (PSP). Oxygen in the film quenches luminescence, and oxygen pressure was initially monitored by measuring the ratio of I(wind-off)/I(wind-on). But this ratio is compromised if there is model motion and if the paint layer is inhomogeneous. Furthermore it requires careful monitoring and placement of light sources. Moreover, this method is seriously affected by temperature. The errors caused by model motion and temperature sensitivity are eliminated or greatly reduced using dual luminophor paint. This paper illustrates a successful application of a dual luminophor PSP in auto model testing. The PSP is made from an oxygen sensitive luminophor, Pt tetra(pentafluorophenyl)-porpholactone, which provides Isen, and Mg tetra(pentafluorophenyl)porphine, which provides temperature-sensitive paint (TSP) as the pressure-independent reference. The ratio PSP/TSP in the FIB polymer produced ideal PSP measurements with a very low-temperature dependence of −0.1% °C−1.
Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. Questions? Contact the NRC Publications Archive team atPublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information. NRC Publications Archive Archives des publications du CNRCThis publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur. For the publisher's version, please access the DOI link below./ Pour consulter la version de l'éditeur, utilisez le lien DOI ci-dessous. NRC Publications Record / Notice d'Archives des publications de CNRC:http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/view/object/?id=09754f89-50a9-46b8-b57c-53c657e4118c http://nparc.cisti-icist.nrc-cnrc.gc.ca/fra/voir/objet/?id=09754f89-50a9-46b8-b57c-53c657e4118c AbstractThe present paper describes the design of a hybrid actuation control concept, a fuzzy logic Proportional-Integral-Derivative plus a conventional On-Off controller, for a new morphing mechanism using smart materials as actuators, which were made from Shape Memory Alloys (SMA). The research work described here was developed for the open loop phase of a morphing wing system, whose primary goal was to reduce the wing drag by delaying the transition (from laminar to fully turbulent flows) position toward the wing trailing edge. The designed controller drives the actuation system equipped with SMA actuators to modify the flexible upper wing skin surface. The designed controller was also included, as an internal loop, in the closed loop architecture of the morphing wing system, based on the pressure information received from the flexible skin mounted pressure sensors and on the estimation of the transition location.The controller's purposes were established following a comprehensive presentation of the morphing wing system architecture and requirements. The strong nonlinearities of the SMA actuators' characteristics and the system requirements led to the choice of a hybrid controller architecture as a combination of a bi-positional on-off controller and a Fuzzy Logic Controller (FLC). In the chosen architecture, the controller would behave as a switch between the SMA cooling and heating phases, situations where the output current is 0 A or is controlled by the FLC.In the design phase, a Proportional-Integral-Derivative scheme was chosen for the FLC. The input-output mapping of the fuzzy model was designed, taking account of the system's error and its change in error, and a final architecture for the hybrid controller was obtained. The sh...
This paper presents the modeling and experimental testing of the aerodynamic performance of a morphing wing in open-loop architecture. We show the method used to acquire the pressure data from the external surface of the flexible wing skin, using incorporated Kulite pressure sensors and the instrumentation of the morphing controller. The acquired pressure data are analyzed through fast Fourier transforms to detect the magnitude of the noise in the surface airflow. Subsequently, the data are filtered by means of high-pass filters and processed by calculating the root mean square of the signal to obtain a plot diagram of the noise in the airflow. This signal processing is necessary to remove the inherent noise electronically induced from the Tollmien-Schlichting waves, which are responsible for triggering the transition from laminar to turbulent flow. The flexible skin is required to morph the shape of the airfoil through two actuation points to achieve an optimized airfoil shape based on the theoretical flow conditions similar to those tested in the wind tunnel. Two shape memory alloy actuators with a nonlinear behavior drive the displacement of the two control points of the flexible skin toward the optimized airfoil shape. Each of the shape memory actuators is activated by a power supply unit and controlled using the Simulink/MATLAB® software through a self-tuning fuzzy controller. The methodology and the results obtained during the wind-tunnel test proved that the concept and validity of the system in real time are discussed in this paper. Real-time acquisition and signal processing of pressure data are needed for further development of the closed-loop controller to obtain a fully automatic morphing wing system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.