By the methods of modern physical materials science the change in structural-phase state of AlCoCrFeNi high-entropy alloy (HEA) of nonequiatomic composition obtained by the methods of wire arc additive technology (WAAM) after irradiation by electron beams with energy density of (10-30) J/cm2, durality of 50 μs, frequency 0.3 Hz is studied. In the initial state the alloy had a dendritic structure indicating the inhomogeneous distribution of elements. It is shown that electron beam processing forms the structure of high-velocity cellular crystallization with cell size of 100-200 nm, along boundaries of which the nanodimensional (15-30 nm) inclusions of the second phase enriched in Cr and Fe atoms are located.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.