Citrus essential oils (CEOs) are a mixture of volatile compounds consisting mainly of monoterpene hydrocarbons and are widely used in the food and pharmaceutical industries because of their antifungal activities. To face the challenge of growing public awareness and concern about food and health safety, studies concerning natural biopreservatives have become the focus of multidisciplinary research efforts. In the past decades, a large amount of literature has been published on the antifungal activity of CEOs. This paper reviews the advances of research on CEOs and focuses on their in vitro and food antifungal activities, chemical compositions of CEOs, and the methods used in antifungal assessment. Furthermore, the antifungal bioactive components in CEOs and their potential mechanism of action are summarized. Finally, the applications of CEOs in the food industry are discussed in an attempt to provide new information for future utilization of CEOs in modern industries.
A variety of conditions lead to anemia, which affects one-quarter of the world's population. Previous genome-wide association studies revealed a number of genetic polymorphisms significantly associated with plasma iron status. To evaluate the association of genetic variants in genes involved in iron delivery and hepcidin regulation pathways with the risk of iron-deficiency anemia (IDA), the following single nucleotide polymorphisms were genotyped in 2139 unrelated elderly Chinese women: rs3811647 (TF), rs7385804 (TFR2), rs235756 (BMP2), and rs855791(V736A) and rs4820268 (TMPRSS6, encoding matriptase-2). We identified common variants in TMPRSS6 as being genetic risk factors for both iron deficiency (OR(rs855791) = 1.55, P = 4.96 × 10(-8)) and IDA (OR(rs855791) = 1.78, P = 8.43 × 10(-9)). TMPRSS6 polymorphisms were also associated with lower serum iron (SI) and hemoglobin levels, consistent with their associations to increased iron deficiency and anemia risk. Variants rs3811647 in TF and rs7385804 in TFR2 were associated with reduced SI, serum transferrin and transferrin saturation levels; however, these variants were not associated with iron deficiency or anemia risk. Our findings suggest that TF, TFR2 and TMPRSS6 polymorphisms are significantly associated with decreased iron status, but only variants in TMPRSS6 are genetic risk factors for iron deficiency and IDA.
Traditional natural product discovery affords no information about compound structure or pharmacological activities until late in the discovery process, and leads to low probabilities of finding compounds with unique biological properties. By integrating serum pharmacochemistry-based screening with high-resolution metabolomics analysis, we have developed a new platform, termed chinmedomics which is capable of directly discovering the bioactive constituents. In this work, the focus is on ShenQiWan (SQW) treatment of ShenYangXu (SYX, kidney-yang deficiency syndrome) as a case study, as determined by chinmedomics. With serum pharmacochemistry, a total of 34 peaks were tentatively characterised in vivo, 24 of which were parent components and 10 metabolites were detected. The metabolic profiling and potential biomarkers of SYX were also investigated and 23 differential metabolites were found. 20 highly correlated components were screened by the plotting of correlation between marker metabolites and serum constituents and considered as the main active components of SQW. These compounds are imported into a database to predict the action targets: 14 importantly potential targets were found and related to aldosterone-regulated sodium reabsorption and adrenergic signaling pathways. Our study showed that integrated chinmedomics is a powerful strategy for discovery and screening of effective constituents from herbal medicines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.