Gamma-ray bursts (GRBs), associated with the collapse of massive stars or the collisions of compact objects, are the most luminous events in our universe. However, there is still much to learn about the nature of the relativistic jets launched from the central engines of these objects. We examine how jet structure-that is, the energy and velocity distribution as a function of angle-affects observed GRB afterglow light curves. Using the package afterglowpy, we compute light curves arising from an array of possible jet structures, and present the suite of models that can fit the coincident electromagnetic observations of GW190814 (which is likely due to a background AGN). Our work emphasizes not only the need for broadband spectral and timing data to distinguish among jet structure models, but also the necessity for high resolution radio follow-up to help resolve background sources that may mimic a GRB afterglow.
On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85 þ21 −14 M ⊙ and 66 þ17 −18 M ⊙ (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 M ⊙. We calculate the mass of the remnant to be 142 þ28 −16 M ⊙ , which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is 5.3 þ2.4 −2.6 Gpc, corresponding to a redshift of 0.82 þ0.28 −0.34. The inferred rate of mergers similar to GW190521 is 0.13 þ0.30 −0.11 Gpc −3 yr −1 .
Gamma-ray bursts (GRBs) have been phenomenologically classified into long and short populations based on whether the observed duration is longer or shorter than two seconds 1 .Multi-wavelength and multi-messenger observations in recent years have revealed that in general long GRBs originate from massive star core collapse events 2 , whereas short GRBs originate from binary neutron star mergers 3 . It has been known that the duration criterion is sometimes unreliable, and multi-wavelength criteria are needed to identify the physical origin of a particular GRB 4 . Some apparently long GRBs have been suggested to have a neutron star merger origin 5 , whereas some apparently short GRBs have been attributed to genuinely long GRBs 6 whose short, bright emission is above the detector's sensitivity threshold. Still, there has been no known case that a GRB is genuinely short but originates from death of a massive star. Here we report the comprehensive analysis of the multi-wavelength data of a bright short GRB 200826A. This burst has a sharp 1-second spike, which is not part of an underlying long-duration event. Its other observational properties are, however,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.