Previously, we reported that Akt inactivation determines the sensitivity of hepatocellular carcinoma (HCC) cells to bortezomib. In this study, we report that cancerous inhibitor of protein phosphatase 2A (CIP2A), a cellular inhibitor of protein phosphatase 2A (PP2A), mediates the apoptotic effect of bortezomib in HCC. Silencing PP2A by small interference RNA (siRNA) abolishes bortezomib-induced down-regulation of phospho-Akt and apoptosis. Bortezomib increases PP2A activity in sensitive HCC cells, including Sk-Hep1, Hep3B and Huh-7, but not in resistant PLC5 cells. Bortezomib down-regulates CIP2A in a dose- and time-dependent manner in all sensitive HCC cells, whereas no alterations in CIP2A were found in resistant PLC5 cells. Knockdown of CIP2A by siRNA restored bortezomib's effects on apoptosis and PP2A activity in PLC5 cells. Moreover, over-expression of CIP2A up-regulated phospho-Akt and protected Sk-Hep1 cells from bortezomib-induced apoptosis. It is significant that, ectopic expression of CIP2A decreased Akt-related PP2A activity, whereas silencing CIP2A increased this activity, indicating that CIP2A negatively regulates Akt-related PP2A activity in HCC cells, furthermore, our in vivo data showed that bortezomib down-regulates CIP2A and up-regulates PP2A activity in Huh-7 tumors, but not in PLC5 tumors. In conclusion, inhibition of CIP2A determines the effects of bortezomib on apoptosis and PP2A-dependent Akt inactivation in HCC.
SummarySystemic lupus erythematosus (SLE) is a systemic autoimmune disease with abnormal T cell immune responses. We hypothesized that aberrant expression of microRNAs (miRNAs) in T cells may contribute to the pathogenesis of SLE. First, we analysed the expression profiles of 270 human miRNAs in T cells from five SLE patients and five healthy controls and then validated those potentially aberrant-expressed miRNAs using real-time polymerase chain reaction (PCR). Then, the expression of mRNAs regulated by these aberrantexpressed miRNAs was detected using real-time PCR. Finally, miRNA transfection into Jurkat T cells was conducted for confirming further the biological functions of these miRNAs. The initial analysis indicated that seven miRNAs, including miR-145, miR-224, miR-513-5p, miR-150, miR516a-5p, miR-483-5p and miR-629, were found to be potentially abnormally expressed in SLE T cells. After validation, under-expressed miR-145 and over-expressed miR-224 were noted. We further found that STAT1 mRNA targeted by miR-145 was over-expressed and apoptosis inhibitory protein 5 (API5) mRNA targeted by miR-224 was under-expressed in SLE T cells. Transfection of Jurkat cells with miR-145 suppressed STAT1 and miR-224 transfection suppressed API5 protein expression. Over-expression of miR-224 facilitates activation-induced cell death in Jurkat cells. In the clinical setting, the increased transcript levels of STAT1 were associated significantly with lupus nephritis. In conclusion, we first demonstrated that miR-145 and miR-224 were expressed aberrantly in SLE T cells that modulated the protein expression of their target genes, STAT1 and API5, respectively. These miRNA aberrations accelerated T cell activation-induced cell death by suppressing API5 expression and associated with lupus nephritis by enhancing signal transducer and activator of transcription-1 (STAT)-1 expression in patients with SLE.
Crosstalk between transforming growth factor beta (TGF-β) signaling and p53 has a critical role in cancer progression. TGF-β signals via Smad and non-Smad pathways. Under normal conditions, wild-type p53 forms a complex with Smad2/3 and co-activates transcription of a variety of tumor suppressor genes, resulting in tumor suppressive effects. Thus, p53 stability is essential in progression of tumor suppressive responses mediated by TGF-β signaling. However, it remains unknown whether p53 stability is regulated by TGF-β. In the current study, we identify that USP15 binds to and stabilizes p53 through deubiquitination in U2OS and HEK293 cells. TGF-β promotes the translation of USP15 through activation of mammalian target of rapamycin by the phosphoinositide 3-kinase/AKT pathway. Upregulation of USP15 translation links the crosstalk between TGF-β signaling and p53 stability, allowing this cytokine to have a critical role in cancer progression.
Epithelial-to-mesenchymal transition (EMT) is well known to involve in tumor invasion and metastasis. Src homology region 2 domain-containing phosphatase 1 (SHP-1) functions as a potent tumor suppressor and also acts as a negative regulator of p-STAT3(Tyr705) oncogenic signaling. However, little is known about the molecular mechanism(s) through which SHP-1 regulates EMT during hepatocellular carcinoma (HCC) progression. Here we first reported that endogenous SHP-1 protein levels were significantly downregulated in cells with mesenchymal characteristics and negatively correlated with p-STAT3(Tyr705) and vimentin but positively correlated with E-cadherin. SHP-1 overexpression abolished transforming growth factor-β1 (TGF-β1)-induced p-STAT3(Tyr705) and EMT, as well inhibited migration and invasion but further rescued by signal transducer and activator of transcription factor 3 (STAT3) overexpression. Depletion of SHP-1 could induce a more increase in TGF-β1-induced p-STAT3(Tyr-705) and EMT characteristics, further supporting the mechanism that suppression of TGF-β1-induced EMT is dependent on SHP-1-mediated STAT3 inactivation. Constitutively overexpressed SHP-1 tyrosine phosphatase activity by D61A-mutated SHP-1 markedly reduced TGF-β1-induced p-STAT3(Tyr705) and EMT features but was not altered by C453S catalytic-dead mutant SHP-1. Consequently, SHP-1 acted as a powerful suppressor in preventing EMT by exerting its tyrosine phosphatase activity that directly downregulated p-STAT3(Tyr705). Most notably, we discovered a novel SHP-1 agonist SC-43 better than sorafenib to exert more potent anti-EMT effects in vitro as well as anti-metastatic growth in vivo. In conclusion, SHP-1 is a potent suppressor of HCC EMT and metastasis, thus highlighting that SC-43-SHP-1 axis may serve as a potential therapeutic target that antagonized p-STAT3(Tyr705) and thereby prevented HCC EMT and metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.