In this study, Bax inhibitor-1 (BI-1release from ER microsomes from BI-1-overexpressing cells and BI-1-reconsituted liposomes. Acidic conditions also induced BI-1 protein oligomerization. Interestingly subjecting BI-1-overexpressing cells to acidic conditions induced more Bax recruitment to mitochondria, more cytochrome c release from mitochondria, and more cell death. These findings suggest that BI-1 increases Ca 2؉ leak rates from the ER through a mechanism that is dependent on pH and on the carboxyl-terminal cytosolic region of the BI-1 protein. The findings also reveal a cell death-promoting phenotype for BI-1 that is manifested under low pH conditions. The endoplasmic reticulum (ER)3 contains the largest calcium reserve in the cell (1, 2). Agonist-induced ER calcium release occurs through Ca 2ϩ channels such as inositol trisphosphate (IP 3 ) and ryanodine receptors (3). Calcium uptake into the ER occurs when the calcium release channels are closed (i.e. negative feedback to the IP 3 receptor) (4) and is performed by sarcoplasmic reticulum/ER-associated calcium-activated ATPase pumps (5). In the resting state, the Ca 2ϩ content of the ER reflects a balance between active uptake by sarcoplasmic reticulum/ER-associated calcium-activated ATPase and passive efflux or basal leakage through other Ca 2ϩ channels. This leakage is revealed when sarcoplasmic reticulum/ER-associated calcium-activated ATPase pumps are inhibited by agents such as thapsigargin (6), causing Ca 2ϩ to leak out of the ER into the cytosol.The Bax inhibitor-1 (BI-1) (also known as "testis enhanced gene transcript" (TEGT)) is an antiapoptotic protein capable of inhibiting Bax activation and translocation to mitochondria (7). This ubiquitously expressed protein contains several transmembrane domains and localizes to the ER. The homology of BI-1 sequences among species is striking, and the characteristic hydrophobicity and ER membrane localization are evolutionarily conserved (8). BI-1 affects calcium leakage from the ER as measured with Ca 2ϩ -sensitive, ER-targeted fluorescent proteins and Ca 2ϩ -sensitive dyes (9). However, the mechanism by which BI-1 regulates ER Ca 2ϩ fluxes remains unclear. Here we have provided additional evidence that BI-1 induces passive Ca 2ϩ leakage from the ER and also show that BI-1 activity is regulated by pH in a manner dependent on the carboxyl-terminal cytosolic domain of this protein.* This work was supported, in whole or in part, by National Institutes of Health Grant AG15393 (to J. C. R.). This work was also supported by Korea Research Foundation Grants KRF-2005-070-C00095, E00021, and 2005-015-E00210 and Korea Science and Engineering Foundation Grants R01-2006-000-10422-0 and R01-2007-000-20275-0. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
We report a study of the magnetic properties of transition-metal doped Zn1−xTMxO (TM=Mn, Co, Fe). Polycrystalline powder samples were synthesized by both solid-state and liquid-phase reactions. From the Curie–Weiss behavior of susceptibility at high temperatures, it was found that the TM–TM interaction is dominated by antiferromagnetic coupling with effective nearest-neighbor exchange constants J=−90 to −30 K. The magnetization data measured at low temperature as a function field H are fit to a parameterized Brillouin function to obtain the effective concentration xeff of magnetically active TM2+ ions. As x increases, the fraction of magnetically active ions, xeff/x, decreases. This is ascribed to an increase in average AF interaction between doped magnetic spins as the average distance between them decreases with an increase in x.
Optical Characterization: Fluorescence spectra were measured using a fiber-coupled grating spectrometer (Jobin Yvon Triax 190) equipped with a charge-coupled device (CCD) detector. The dye was excited by a 488 nm continuous wave Ar-ion laser (Spectra-Physics Stabilite 2017). The excitation intensity was kept low to avoid degradation of the dye.The reflectance spectra of the films were collected on a fibercoupled grating spectrometer (Jobin Yvon Triax 190) [1] studies have been extensively performed in order to understand the operating mechanism and improve conversion efficiency. As a consequence, solar energy conversion efficiency as high as 11 % has been achieved. [2] In recent years, lightweight plastic-type DSSCs have attracted much attention due to drastic reduction in cost and more extensive applications, such as mobile power for wearable electronic devices. Unlike glass-based DSSCs, the COMMUNICATIONS
Matrix metalloproteinase-9 (MMP-9) has been implicated in the pathogenesis of cancer, autoimmune disease, and various pathologic conditions characterized by excessive fibrosis. In this study, we investigated the expression of MMP-9 and its clinical significance in systemic sclerosis (SSc). The patients (n = 42) with SSc had higher concentrations of MMP-9 and of tissue inhibitor of metalloproteinase-1 (TIMP-1) and a higher ratio of MMP-9 to TIMP-1 in sera than healthy controls (n = 32). Serum MMP-9 concentrations were significantly higher in the diffuse type (n = 23) than the limited type of SSc (n = 19). Serum concentrations of MMP-9 correlated well with the degree of skin involvement, as determined by the Rodnan score and with serum concentrations of transforming growth factor β. Moreover, dermal fibroblasts from patients with SSc produced more MMP-9 than those from healthy controls when they were stimulated with IL-1β, tumor necrosis factor α, or transforming growth factor β. Such an increase in MMP-9 production was partially blocked by treatment with cyclosporin A. In summary, the serum MMP-9 concentrations were elevated in SSc patients and correlated well with skin scores. The increased MMP-9 concentrations may be attributable to overproduction by dermal fibroblasts in SSc. These findings suggest that the enhanced production of MMP-9 may contribute to fibrogenic remodeling during the progression of skin sclerosis in SSc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.