Apoptosis plays a dual role in cancer development and malignancy. The role of apoptosis-related caspases in cancer remains controversial, particularly in oral tongue squamous cell carcinoma (OTSCC). In this study, we examined the protein levels of cleaved caspase-3, caspase-3, caspase-8, and caspase-9 on tissue microarrays consisting of samples from 246 OTSCC patients by immunohistochemistry. Wilcoxon signed-rank test indicated that the protein levels of cleaved caspase-3, caspase-3, caspase-8, and caspase-9 in tumor tissues were significantly higher compared to those in adjacent normal tissues (all p<0.001). The expression level of caspase-8 in tumors was elevated in patients with lymph node invasion. Moreover, positive expression of cleaved caspase-3 was associated with shorter disease-free survival (DFS) in OTSCC patients with moderate differentiation and lymph node invasion. Combination of either positive cleaved caspase-3 or higher caspase-3 expression or both was associated with poor DFS. Interestingly, stratification analysis showed that co-expression levels of positive cleaved caspase-3 or/and higher caspase-3 were associated with better disease-specific survival in patients with advanced stages of the disease, such as large tumor size and lymph node invasion, whereas it was associated with poor DFS in OTSCC patients with moderate cell differentiation and small tumor size. Taken together, cleaved caspase-3 and caspase-3/8/9 could be biomarkers for tumorigenesis in OTSCC patients. The co-expression level of cleaved caspase-3 and caspase-3 might be a prognostic biomarker for OTSCC patients, particular in those patients with certain tumor stages and cell differentiation status.
We aimed to investigate the association of the expression levels of five epithelial–mesenchymal transition (EMT)-related proteins (Snail, Twist, E-cadherin, N-cadherin, and Vimentin) with tumorigenesis, pathologic parameters and prognosis in tongue squamous cell carcinoma (TSCC) patients by immunohistochemistry of tissue microarray. The expression levels of Snail, E-cadherin, N-cadherin and Vimentin were significantly different between the tumor adjacent normal and tumor tissues. In tumor tissues, lower E-cadherin and higher N-cadherin levels were associated with a higher grade of cell differentiation, advanced stage of disease, and lymph node metastasis. However, higher Vimentin expression was associated with poor cell differentiation and lymph node metastasis. Patients with low E-cadherin expression had poor disease-specific survival (DSS). Conversely, positive N-cadherin and higher Vimentin expression levels were associated with poor DSS and disease-free survival. Notably, our multivariate Cox regression model indicated that high Vimentin expression was an adverse prognostic factor for DSS in TSCC patients, even after the adjustment for cell differentiation, pathological stage, and expression levels of Snail, Twist, E-cadherin, and N-cadherin. Snail, E-cadherin, N-cadherin, and Vimentin were associated with tumorigenesis and pathological outcomes. Among the five EMT-related proteins, Vimentin was a potential prognostic factor for TSCC patients.
BackgroundLong noncoding RNAs (lncRNAs) are more than 200 nucleotides in length and lack transcriptional ability. The biological function of lncRNAs in oral squamous cell carcinoma (OSCC) remains unclear. The aim of this study was to identify the dysfunction of lncRNA in OSCC.ResultsWe analyzed the transcriptome profiles of human OSCC tissues and paired adjacent normal tissues from two patients through a next-generation sequencing approach. A total of 14 lncRNAs were upregulated (fold change ≥3) and 13 were downregulated (fold change ≤−3) in OSCC tissues compared with the adjacent normal tissues. SOX21-AS1 was subjected to further analysis, revealing that the expression levels of SOX21-AS1 significantly decreased in OSCC compared with the adjacent normal tissue. The promoter activity of SOX21-AS1 was obviously suppressed by in vitro methylation. The DNA methylation status of the SOX21-AS1 promoter was analyzed using combined bisulfite restriction analysis, revealing that the aberrant promoter hypermethylation of SOX21-AS1 was observed frequently in OSCC tissues. The effects of SOX21-AS1 on cell proliferation and invasion were examined through transient transfection. Our data showed that SOX21-AS1 could significantly suppress oral cancer cell growth and invasion. Furthermore, the low expression level of SOX21-AS1 was significantly correlated with an advanced stage (P = 0.047), large tumor size (P = 0.033), and poor disease-specific survival in OSCC patients (P = 0.002).ConclusionsSOX21-AS1 was identified as susceptible dysfunction correlated with promoter hypermethylation in OSCC. Low SOX21-AS1 expression may be an adverse prognostic biomarker for OSCC.Electronic supplementary materialThe online version of this article (doi:10.1186/s13148-016-0291-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.