BACKGROUND Appendiceal mucinous neoplasm (AMN) is extremely rare. Since the disease does not manifest a characteristic profile of clinical symptoms, it is easy to misdiagnose and still difficult to diagnose without operation. Here, we report a case of low-grade AMN (LAMN) and summarize its clinical features, diagnosis, and treatment. CASE SUMMARY A 63-year-old postmenopausal woman presented with a history of right lower abdominal mass. The patient underwent laparotomy, which showed an appendiceal mucocele originating from the apex of the appendix, and a simple appendectomy was performed. The subsequent histological assessment identified an LAMN with no lymph node involvement and negative surgical margin. The patient received six cycles of chemotherapy after surgery, and to date, more than a year after the surgery, the patient remains in good health. CONCLUSION A unified, standardized, detailed, and accurate pathological diagnosis is needed for LAMN, to facilitate selection of an appropriate surgical plan. In addition, the surgeon should record the details of the tumors in the surgical records in order to facilitate follow-up after surgery.
Cholesteryl ester transfer protein (CETP) plays an important role in lipid metabolism. Low levels of high-density lipoprotein cholesterol (HDL-C) increase the risk of type 2 diabetes (T2D). This study investigated CETP gene variants to assess the risk of T2D and specific complications of diabetic kidney disease (DKD) and diabetic retinopathy. Towards this, a total of 3023 Taiwanese individuals (1383 without T2D, 1640 with T2D) were enrolled in this study. T2D mice (+Leprdb/+Leprdb, db/db) were used to determine CETP expression in tissues. The A-alleles of rs3764261, rs4783961, and rs1800775 variants were found to be independently associated with 2.86, 1.71, and 0.91 mg/dL increase in HDL-C per allele, respectively. In addition, the A-allele of rs4783961 was significantly associated with a reduced T2D risk (odds ratio (OR), 0.82; 95% confidence interval (CI), 0.71–0.96)), and the A-allele of rs1800775 was significantly related to a lowered DKD risk (OR, 0.78; 95% CI, 0.64–0.96). CETP expression was significantly decreased in the T2D mice kidney compared to that in the control mice (T2D mice, 0.16 ± 0.01 vs. control mice, 0.21 ± 0.02; p = 0.02). These collective findings indicate that CETP variants in the promoter region may affect HDL-C levels. Taiwanese individuals possessing an allele associated with higher HDL-C levels had a lower risk of T2D and DKD.
Diabetic retinopathy (DR) is a severe and recurrent microvascular complication in diabetes. The multifunctional response gene to complement 32 (RGC-32) is involved in the regulation of cell cycle, proliferation, and apoptosis. To investigate the role of RGC-32 in the development of DR, we used human retinal microvascular endothelial cells under high-glucose conditions and type 2 diabetes (T2D) mice (+Leprdb/ + Leprdb, db/db). The results showed that RGC-32 expression increased moderately in human retinal endothelial cells under hyperglycemic conditions. Histopathology and RGC-32 expression showed no significant changes between T2D and control mice retina at 16 and 24 weeks of age. However, RGC-32 expression was significantly decreased in T2D mouse retina compared to the control group at 32 weeks of age, which develop features of the early clinical stages of DR, namely reduced retinal thickness and increased ganglion cell death. Moreover, immunohistochemistry showed that RGC-32 was predominantly expressed in the photoreceptor inner segments of control mice, while the expression was dramatically lowered in the T2D retinas. Furthermore, we found that the level of anti-apoptotic protein Bcl-2 was decreased (approximately 2-fold) with a concomitant increase in cleaved caspase-3 (approximately 3-fold) in T2D retina compared to control. In summary, RGC-32 may lose its expression in T2D retina with features of DR, suggesting that it plays a critical role in DR pathogenesis.
Many lines of evidence demonstrate the associations of colorectal cancer (CRC) with intestinal microbial dysbiosis. Recent reports have suggested that maintaining the homeostasis of microbiota and host might be beneficial to CRC patients, but the underlying mechanisms remain unclear. In this study, we established a CRC mouse model of microbial dysbiosis and evaluated the effects of fecal microbiota transplantation (FMT) on CRC progression. Azomethane and dextran sodium sulfate were used to induce CRC and microbial dysbiosis in mice. Intestinal microbes from healthy mice were transferred to CRC mice by enema. The vastly disordered gut microbiota of CRC mice was largely reversed by FMT. Intestinal microbiota from normal mice effectively suppressed cancer progression as assessed by measuring the diameter and number of cancerous foci and significantly prolonged survival of the CRC mice. In the intestine of mice that had received FMT, there were massive infiltration of immune cells, including CD8+ T and CD49b+ NK, which is able to directly kill cancer cells. Moreover, the accumulation of immunosuppressive cells, Foxp3+ Treg cells, seen in the CRC mice was much reduced after FMT. Additionally, FMT regulated the expressions of inflammatory cytokines in CRC mice, including down-regulation of IL1a, IL6, IL12a, IL12b, IL17a, and elevation of IL10. These cytokines were positively correlated with Azospirillum_sp._47_25, Clostridium_sensu_stricto_1, the E. coli complex, Akkermansia, Turicibacter, and negatively correlated with Muribaculum, Anaeroplasma, Candidatus_Arthromitus, and Candidatus Saccharimonas. Furthermore, the repressed expressions of TGFb, STAT3 and elevated expressions of TNFa, IFNg, CXCR4 together promoted the anti-cancer efficacy. Their expressions were positively correlated with Odoribacter, Lachnospiraceae-UCG-006, Desulfovibrio, and negatively correlated with Alloprevotella, Ruminococcaceae UCG-014, Ruminiclostridium, Prevotellaceae UCG-001 and Oscillibacter. Our studies indicate that FMT inhibits the development of CRC by reversing gut microbial disorder, ameliorating excessive intestinal inflammation and cooperating with anti-cancer immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.