The solid-state mechanical alloying (MA) of high-nitrogen chromium-manganese austenite steel—MA in a planetary ball mill, —was studied by methods of Mössbauer spectroscopy and transmission electron microscopy (TEM). In the capacity of a material for the alloying we used mixtures of the binary Fe–Mn and Fe–Cr alloys with the nitrides CrN (Cr2N) and Mn2N. It is shown that ball milling of the mixtures has led to the occurrence of the α → γ transitions being accompanied by the (i) formation of the solid solutions supersaturated with nitrogen and by (ii) their decomposition with the formation of secondary nitrides. The austenite formed by the ball milling and subsequent annealing at 700–800 °C, was a submicrocrystalline one that contained secondary nano-sized crystalline CrN (Cr2N) nitrides. It has been established that using the nitride Mn2N as nitrogen-containing addition is more preferable for the formation and stabilization of austenite—in the course of the MA and subsequent annealing—because of the formation of the concentration-inhomogeneous regions of γ phase enriched with austenite-forming low-mobile manganese.
We present a brief overview of the structural and phase transformations and mechanical properties of bulk binary TiNi shape memory alloys, which demonstrate attractive commercial potential. The main goal of this work was to create a favorable microstructure of bulk alloys using both traditional and new alternative methods of thermal and thermomechanical processing. It was found that the implementation of an ultrafine-grained structure by different methods determined an unusual combination of strength, ductility, reversible deformation, reactive resistance of these alloys to subsequent tensile or torsion tests at room temperature, and, as a consequence, the highly reversible effects of the shape memory and superelasticity. It is shown that the alloys Ti49.8Ni50.2 and Ti49.4Ni50.6 are incapable of aging, and, after being subjected to ECAP, were characterized by their high strength (σu up to 1200 MPa) and ductility (δ up to 60–70%). A combined treatment of multi-pass rolling and HT of the Ti49.5Ni50.5 and Ti49Ni51 alloys prone to aging have provided even greater strength (σu up to 1400–1500 MPa) with slightly lower ductility (25–30%). The microstructure, phase composition, and martensitic transformations in Ti-Ni alloys with varying Ni concentrations ranging from 50 to 51 wt.% were investigated by TEM, SEM, and X-ray methods. The mechanical behavior of the alloys was studied during tensile and torsion tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.