c-Fos is a major component of activator protein (AP)-1 complex. It has been implicated in cell differentiation, proliferation, angiogenesis, invasion, and metastasis. To investigate the role of c-Fos in glioma radiosensitivity and to understand the underlying molecular mechanisms, we downregulated c-Fos gene expression by lentivirus-mediated shRNA in glioma cell lines and subsequently analyzed the radiosensitivity, DNA damage repair capacity, and cell cycle distribution. Finally, we explored its prognostic value in 41 malignant glioma patients by immunohistochemistry. Our results showed that silencing c-Fos sensitized glioma cells to radiation by increasing radiation-induced DNA double strand breaks (DSBs), disturbing the DNA damage repair process, promoting G2/M cell cycle arrest, and enhancing apoptosis. c-Fos protein overexpression correlated with poor prognosis in malignant glioma patients treated with standard therapy. Our findings provide new insights into the mechanism of radioresistance in malignant glioma and identify c-Fos as a potentially novel therapeutic target for malignant glioma patients.
Hepatocellular carcinoma (HCC) is generally believed to have low sensitivity to chemotherapeutic agents including oxaliplatin (OXA). Studies have demonstrated that gap junctions (GJs) composed of connexin (Cx) proteins have the potential to modulate drug chemosensitivity in multiple tumor cells. In the present study, we investigated the characteristics of Cx and GJs in HCC at both histologic and cytologic levels, and the effects of GJ and its effective components on OXA cytotoxicity in HCC cells in vitro. Immunohistochemistry was performed in 76 HCCs and 20 normal liver tissues to detect and locate the expression of Cx26, Cx32 and Cx43. At cytologic levels, the expression and localization of Cxs were evaluated by RT-PCR, western blot and immunofluorescence assay, respectively. The GJ function between adjacent cells was detected using dye transfer assay. The role of GJs in the modulation of OXA toxicity in HCC cells was explored using pharmacologic and molecular biologic methods. We found that Cx expression in HCC tissues was significantly lower than in normal liver tissues, and the 'internalization' from cell membrane to cytoplasm was remarkable. In vitro experiments revealed the presence of functional GJs in the SMMC-7721 HCC cells due to a small amount of Cx protein along the plasma membrane at cell-cell contacts. Regulation of this part of GJs positively influenced OXA cytotoxicity. Using RNA interference, only specific inhibition of Cx26 but not Cx32 or Cx43 reduced OXA cytotoxicity. Conversely, Cx26 overexpression by transfection of Cx26 plasmid DNA enhanced OXA cytotoxicity. This study demonstrated that during hepatocarcinogenesis, the reduced expression and internalization of Cx proteins impaired the GJ function, which further attenuated OXA cytotoxicity. Impaired GJ function may contribute to low intrinsic chemosensitivity of HCC cells to OXA, mediated by Cx26.
Abstract. The expression patterns and functions of microRNA-134 (miR-134) have been previously studied in numerous types of cancer. To the best of our knowledge, this is the first study of miR-134 in human breast cancer. In the present study, the expression patterns, biological functions and underlying molecular mechanisms of miR-134 in human breast cancer were investigated. Reverse transcription-quantitative polymerase chain reaction evaluated the expression of miR-134 in human breast cancer tissues, matched normal adjacent tissues, breast cancer cell lines and a normal mammary epithelial cell line. Following transfection with miR-134, an MTT assay, cell migration assay, cell invasion assay, western blot analysis and a luciferase assay were performed on the MCF-7 and MDA-MB-231 human breast cancer cell lines. The findings revealed that miR-134 expression levels were significantly downregulated in breast cancer cells. Statistical analysis demonstrated that low expression of miR-134 was significantly associated with lymph node metastasis, TNM stage and reduced cell differentiation. It was observed that miR-134 inhibited the growth, migration and invasion of breast cancer cells. Additionally, the present study indicated that miR-134 may directly target the Kirsten rat sarcoma viral oncogene homolog in breast cancer tissues. These results suggest that miR-134 may be used as a potential therapeutic biomarker in breast cancers.
Osteosarcoma is an aggressive malignancy with rapid development and poor prognosis. microRNA-19 (miR-19) plays an important role in several biological processes. Sprouty-related EVH1 domain protein 2 (SPRED2) is a suppressor of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling to inhibit tumor development and progression by promoting autophagy. In this study, we investigated the roles of miR-19, SPRED2, and autophagy in osteosarcoma. We detected the expression of miR-19, SPRED2, epithelial–mesenchymal transition (EMT) markers, and autophagy-related proteins via quantitative real-time polymerase chain reaction or western blot. To evaluate the function of miR-19 and SPRED2, we used MTT and colony formation assays to detect cell proliferation, Transwell, and wound-healing assays to detect cell invasion and migration. Targetscan and luciferase reporter assays confirmed the relationship between SPRED2 and miR-19. The expression of miR-19 was significantly upregulated in osteosarcoma, while SPRED2 was downregulated. miR-19 inhibitor reduced cell proliferation, invasion, migration, and EMT, while its cell biological effects were partially reversed by addition of autophagy inhibitor 3-methyladenine (3-MA) or SPRED2 siRNA in osteosarcoma. SPRED2, a suppressor of ERK/MAPK pathway that is known to trigger autophagy, was identified as a direct target of miR-19. SPRED2 overexpression increased cell proliferation, invasion, migration, and EMT by promoting autophagy, and the effects could be inhibited by 3-MA. Collectively, these findings reveal an underlying mechanism for development of osteosarcoma. miR-19 was upregulated in osteosarcoma cells, and negatively regulated SPRED2, thus promoting the malignant transformation of osteosarcoma cells via inhibiting SPRED2-induced autophagy. Therefore, miR-19/SPRED2 may be a potential target for the treatment of osteosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.