Gypsum-based composites was produced using gypsum power(cement), PVA, white latex and sawdust via pouring process. The influences of water/ cement ratio, PVA/ cement ratio and glue/ cement ratio on release time, density and impact strength of the gypsum-based composites were investigated through orthogonal experiment. The results showed that PVA strengthened obviously impact strength, and also delayed the s release time of the Gypsum-based composites. Sawdust as light filler reduced the composites density. Low content of white latex is beneficial to increase the impact strength, while high content of white latex is easy to form micelle in the gypsum crystallization process and is enclosed in crystals, which decreases the impact strength of composite materials.
Li2FeSiO4/C and Li1.97Mg0.03FeSiO4/C composites were successfully prepared by a solid-state method. Both samples were systematically investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), the charge-discharge test and electrochemical impedance spectra measurement, respectively. It was found that the Li1.97Mg0.03FeSiO4/C composite exhibited an excellent rate capability with a discharge capacity of 144mAh g-1 at 0.2C and 97mAh g-1 at 5C, and after 100 cycles at 1 C, 96% of its initial capacity was retained.
A sensitive fluorescent biosensing strategy based on structure-switching of molecular beacon for the detection of single nucleotide polymorphism is proposed in this study. In the absence of target DNA, only low background fluorescence can be detected since the formation of hairpin structure induces close proximity of fluorophore and quencher. On the contrary, the fluorescence intensity increases significantly after introduction of target DNA because structure-switching of molecular beacon results in separation of fluorophore and quencher. The change of fluorescence intensity is linear with concentration of target DNA, and a molecular beacon-based sensing system for fluorescent detection of single nucleotide polymorphism is fabricated. The target DNA can be sensitively detected in a linear dynamic range from 17.58nM-1.125μM with a low detection limit of 8 nM. Moreover, good reproducibility and high specificity are achieved.
Calcium carbonate whiskers were successfully prepared in the MgC12-Ca(OH)2-CO2 system by a intermittent bubbling method and characterized by X-ray diffraction and scanning electron microscopy. The results demonstrated that aragonite style calcium carbonate whiskers with well morphology, large aspect ratio and smooth surface can be obtained by controlling technical conditions such as reaction temperature, concentration of Ca(OH)2 and amount of additives and under the conditions of CO2 flow velocity of 3.4ml/min/gCa(OH)2, flow of CO2 to air ratio of 1:4, stirring speed of 240 r/min.
Spinel Li4-xKxTi5O12(x=0, 0.03) were successfully synthesized by a traditional solid-state method and systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and the charge-discharge test, respectively. The results demonstrated that Li3.97K0.03Ti5O12exhibited much better rate performance in comparsion with Li4Ti5O12. At 0.2 C and 10 C, it delivered a discharge capacity of 173 mAh g-1and 124 mAh g-1respectively, and after 100 cycles at 10 C, 96.1% of its initial capacity was retained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.