Background The prognosis for diffuse gliomas is very poor and the mechanism underlying their malignant progression remains unclear. Here, we aimed to elucidate the role and mechanism of the RNA N6,2′-O-dimethyladenosine (m6A) reader, YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), in regulating the malignant progression of gliomas. Methods YTHDF2 mRNA levels and functions were assessed using several independent datasets. Western blotting, quantitative polymerase chain reaction, and immunohistochemistry were used to evaluate the expression levels of YTHDF2 and other molecules in human and mouse tumor tissues and cells. Knockdown and overexpression were used to evaluate the effects of YTHDF2, methyltransferase-like 3 (METTL3), and UBX domain protein 1 (UBXN1) on glioma malignancy in cell and orthotopic xenograft models. RNA immunoprecipitation (RIP), methylated RIP, and RNA stability experiments were performed to study the mechanisms underlying the oncogenic role of YTHDF2. Results YTHDF2 expression was positively associated with a higher malignant grade and molecular subtype of glioma and poorer prognosis. YTHDF2 promoted the malignant progression of gliomas in both in vitro and in vivo models. Mechanistically, YTHDF2 accelerated UBXN1 mRNA degradation via METTL3-mediated m6A, which, in turn, promoted NF-κB activation. We further revealed that UBXN1 overexpression attenuated the oncogenic effect of YTHDF2 overexpression and was associated with better survival in patients with elevated YTHDF2 expression. Conclusions Our findings confirmed that YTHDF2 promotes the malignant progression of gliomas and revealed important insight into the upstream regulatory mechanism of NF-κB activation via UBXN1 with a primary focus on m6A modification.
1p/19q codeletion, which leads to the abnormal expression of 1p19q genes in oligodendroglioma, is associated with chemosensitivity and favorable prognosis. Here, we aimed to explore the clinical implications of 1p19q gene expression in 1p/19q non-codel gliomas. We analyzed expression of 1p19q genes in 668 1p/19q non-codel gliomas obtained from The Cancer Genome Atlas (n = 447) and the Chinese Glioma Genome Atlas (n = 221) for training and validation, respectively. The expression of 1p19q genes was significantly correlated with the clinicopathological features and overall survival of 1p/19q non-codel gliomas. Then, we derived a risk signature of 25 selected 1p19q genes that not only had prognosis value in total 1p/19q non-codel gliomas but also had prognosis value in stratified gliomas. The prognosis value of the risk signature was superior than known clinicopathological features in 1p/19q non-codel gliomas and was also highly associated with the following features: loss of CDKN2A/B copy number in mutant-IDH-astrocytoma; telomerase reverse transcriptase (TERT) promoter mutation, combined chromosome 7 gain/chromosome 10 loss and epidermal growth factor receptor amplification in wild-type-IDH-astrocytoma; classical and mesenchymal subtypes in glioblastoma. Furthermore, genes enriched in the biological processes of cell division, extracellular matrix, angiogenesis significantly correlated to the signature risk score, and this is also supported by the immunohistochemistry and cell biology experiments. In conclusion, the expression profile of 1p19q genes is highly associated with the malignancy and prognosis of 1p/19q non-codel gliomas. A 25-1p19q-gene signature has powerfully predictive value for both malignant molecular pathological features and prognosis across distinct subgroups of 1p/19q non-codel gliomas.
Background Glioblastoma is a paradigm of cancer‐associated immunosuppression, limiting the effects of immunotherapeutic strategies. Thus, identifying the molecular mechanisms underlying immune surveillance evasion is critical. Recently, the preferential expression of inhibitory natural killer (NK) cell receptor CD161 on glioma‐infiltrating cytotoxic T cells was identified. Focusing on the molecularly annotated, large‐scale clinical samples from different ethnic origins, the data presented here provide evidence of this immune modulator's essential roles in brain tumor biology. Methods Retrospective RNA‐seq data analysis was conducted in a cohort of 313 patients with glioma in the Chinese Glioma Genome Atlas (CGGA) database and 603 patients in The Cancer Genome Atlas (TCGA) database. In addition, single‐cell sequencing data from seven surgical specimens of glioblastoma patients and a model in which patient‐derived glioma stem cells were cocultured with peripheral lymphocytes, were used to analyze the molecular evolution process during gliomagenesis. Results CD161 was enriched in high‐grade gliomas and isocitrate dehydrogenase (IDH)‐wildtype glioma. CD161 acted as a potential biomarker for the mesenchymal subtype of glioma and an independent prognostic factor for the overall survival (OS) of patients with glioma. In addition, CD161 played an essential role in inhibiting the cytotoxicity of T cells in glioma patients. During the process of gliomagenesis, the expression of CD161 on different lymphocytes dynamically evolved. Conclusion The expression of CD161 was closely related to the pathology and molecular pathology of glioma. Meanwhile, CD161 promoted the progression and evolution of gliomas through its unique effect on T cell dysfunction. Thus, CD161 is a promising novel target for immunotherapeutic strategies in glioma treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.