The exciting applications of molecular motion are still limited and are in urgent pursuit, although some fascinating concepts such as molecular motors and molecular machines have been proposed for years. Utilizing molecular motion in a nanoplatform for practical application has been scarcely explored due to some unconquered challenges such as how to achieve effective molecular motion in the aggregate state within nanoparticles. Here, we introduce a class of near infrared-absorbing organic molecules with intramolecular motion-induced photothermy inside nanoparticles, which enables most absorbed light energy to dissipate as heat. Such a property makes the nanoparticles a superior photoacoustic imaging agent compared to widely used methylene blue and semiconducting polymer nanoparticles and allow them for high-contrast photoacoustic imaging of tumours in live mice. This study not only provides a strategy for developing advanced photothermal/photoacoustic imaging nanoagents, but also enables molecular motion in a nanoplatform to find a way for practical application.
With recent progress in photothermal materials, organic small molecules featured with flexibility, diverse structures, and tunable properties exhibit unique advantages but have been rarely applied in solar‐driven water evaporation owing to limited sunlight absorption resulting in low solar–thermal conversion. Herein, a stable croconium derivative, named CR‐TPE‐T, is designed to exhibit the unique biradical property and strong π–π stacking in the solid state, which facilitate not only a broad absorption spectrum from 300 to 1600 nm for effective sunlight harvesting, but also highly efficient photothermal conversion by boosting nonradiative decay. The photothermal efficiency is evaluated to be 72.7% under 808 nm laser irradiation. Based on this, an interfacial‐heating evaporation system based on CR‐TPE‐T is established successfully, using which a high solar‐energy‐to‐vapor efficiency of 87.2% and water evaporation rate of 1.272 kg m−2 h−1 under 1 sun irradiation are obtained, thus making an important step toward the application of organic‐small‐molecule photothermal materials in solar energy utilization.
Purely organic emitters that can efficiently utilize triplet excitons are highly desired to cut the cost of organic light-emitting diodes (OLEDs), but most of them require complicated doping techniques for their fabrication and suffer from severe efficiency roll-off. Herein, we developed novel luminogens with weak emission and negligible delayed fluorescence in solution but strong emission with prominent delayed components upon aggregate formation, giving rise to aggregation-induced delayed fluorescence (AIDF). The concentration-caused emission quenching and exciton annihilation are well-suppressed, which leads to high emission efficiencies and efficient exciton utilization in neat films. Their nondoped OLEDs provide excellent electroluminescence efficiencies of 59.1 cd A , 65.7 lm W , and 18.4 %, and a negligible current efficiency roll-off of 1.2 % at 1000 cd m . Exploring AIDF luminogens for the construction of nondoped OLEDs could be a promising strategy to advance device efficiency and stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.