Coherence in light-matter interaction is a necessary ingredient if light is used to control the quantum state of a material system. Coherent effects are firmly associated with isolated systems kept at low temperature. The exceedingly fast dephasing in condensed matter environments, in particular at elevated temperatures, may well erase all coherent information in the material at timescales shorter than a laser excitation pulse. Here we show for an ensemble of semiconductor quantum dots that even in the presence of ultrafast dephasing, for suitably designed condensed matter systems quantum-coherent effects are robust enough to be observable at room temperature. Our conclusions are based on an analysis of the reshaping an ultrafast laser pulse undergoes on propagation through a semiconductor quantum dot amplifier. We show that this pulse modification contains the signature of coherent light-matter interaction and can be controlled by adjusting the population of the quantum dots via electrical injection.
Submonolayer quantum dots promise to combine the beneficial features of zero- and two-dimensional carrier confinement. To explore their potential with respect to all-optical signal processing, we investigate the amplitude-phase coupling (α-parameter) in semiconductor optical amplifiers based on InAs/GaAs submonolayer quantum dots in ultrafast pump-probe experiments. Lateral coupling provides an efficient carrier reservoir and gives rise to a large α-parameter. Combined with a high modal gain and an ultrafast gain recovery, this makes the submonolayer quantum dots an attractive gain medium for nonlinear optical signal processing.
In time-resolved experiments at InGaAs/GaAs quantum-dots-in-a-well ͑DWELL͒ semiconductor optical amplifiers, pump-probe of the ground state ͑GS͒ population, and complementary measurement of the amplified spontaneous emission of the excited state ͑ES͒ population, we are able to separate the early subpicosecond dephasing dynamics from the later picosecond population relaxation dynamics. We observe a 10 ps delay between the nonlinear GS pulse amplification and the subsequent ES population drop-off that supports the dominance of a direct two dimensional reservoir-GS capture relaxation path in electrically pumped quantum-dot-DWELL structures.
Submonolayer quantum dots as active medium in opto-electronic devices promise to combine the high density of states of quantum wells with the fast recovery dynamics of self-assembled quantum dots. We investigate the gain and phase recovery dynamics of a semiconductor optical amplifier based on InAs submonolayer quantum dots in the regime of linear operation by one-and two-color heterodyne pump-probe spectroscopy. We find an as fast recovery dynamics as for quantum dot-ina-well structures, reaching 2 ps at moderate injection currents. The effective quantum well embedding the submonolayer quantum dots acts as a fast and efficient carrier reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.