ObjectivesTo examine the association between temperature and cause specific mortality, and to quantify the corresponding disease burden attributable to non-optimum ambient temperatures.DesignTime series analysis.Setting272 main cities in China.PopulationNon-accidental deaths in 272 cities covered by the Disease Surveillance Point System of China, from January 2013 to December 2015.Main outcomes and measuresDaily numbers of deaths from all non-accidental causes and main cardiorespiratory diseases. Potential effect modifiers included demographic, climatic, geographical, and socioeconomic characteristics. The analysis used distributed lag non-linear models to estimate city specific associations, and multivariate meta-regression analysis to obtain the effect estimates at national and regional levels.Results1 826 186 non-accidental deaths from total causes were recorded in the study period. Temperature and mortality consistently showed inversely J shaped associations. At the national average level, relative to the minimum mortality temperature (22.8°C, 79.1st centile), the mortality risk of extreme cold temperature (at −1.4°C, the 2.5th centile) lasted for more than 14 days, whereas the risk of extreme hot temperature (at 29.0°C, the 97.5th centile) appeared immediately and lasted for two to three days. 14.33% of non-accidental total mortality was attributable to non-optimum temperatures, of which moderate cold (ranging from −1.4 to 22.8°C), moderate heat (22.8 to 29.0°C), extreme cold (−6.4 to −1.4°C), and extreme heat (29.0 to 31.6°C) temperatures corresponded to attributable fractions of 10.49%, 2.08%, 1.14%, and 0.63%, respectively. The attributable fractions were 17.48% for overall cardiovascular disease, 18.76% for coronary heart disease, 16.11% for overall stroke, 14.09% for ischaemic stroke, 18.10% for haemorrhagic stroke, 10.57% for overall respiratory disease, and 12.57% for chronic obstructive pulmonary diseases. The mortality risk and burden were more prominent in the temperate monsoon and subtropical monsoon climatic zones, in specific subgroups (female sex, age ≥75 years, and ≤9 years spent in education), and in cities characterised by higher urbanisations rates and shorter durations of central heating.ConclusionsThis nationwide study provides a comprehensive picture of the non-linear associations between ambient temperature and mortality from all natural causes and main cardiorespiratory diseases, as well as the corresponding disease burden that is mainly attributable to moderate cold temperatures in China. The findings on vulnerability characteristics can help improve clinical and public health practices to reduce disease burden associated with current and future abnormal weather.
Background:Few large multicity studies have been conducted in developing countries to address the acute health effects of atmospheric ozone pollution.Objective:We explored the associations between ozone and daily cause-specific mortality in China.Methods:We performed a nationwide time-series analysis in 272 representative Chinese cities between 2013 and 2015. We used distributed lag models and over-dispersed generalized linear models to estimate the cumulative effects of ozone (lagged over 0–3 d) on mortality in each city, and we used hierarchical Bayesian models to combine the city-specific estimates. Regional, seasonal, and demographic heterogeneity were evaluated by meta-regression.Results:At the national-average level, a 10-μg/m3 increase in 8-h maximum ozone concentration was associated with 0.24% [95% posterior interval (PI): 0.13%, 0.35%], 0.27% (95% PI: 0.10%, 0.44%), 0.60% (95% PI: 0.08%, 1.11%), 0.24% (95% PI: 0.02%, 0.46%), and 0.29% (95% PI: 0.07%, 0.50%) higher daily mortality from all nonaccidental causes, cardiovascular diseases, hypertension, coronary diseases, and stroke, respectively. Associations between ozone and daily mortality due to respiratory and chronic obstructive pulmonary disease specifically were positive but imprecise and nonsignificant. There were no statistically significant differences in associations between ozone and nonaccidental mortality according to region, season, age, sex, or educational attainment.Conclusions:Our findings provide robust evidence of higher nonaccidental and cardiovascular mortality in association with short-term exposure to ambient ozone in China. https://doi.org/10.1289/EHP1849
The present study provided robust epidemiologic evidence of associations between day-to-day NO2 and mortality from total natural causes and main cardiorespiratory diseases that might be independent of other criteria air pollutants.
Background: Coarse particulate matter with aerodynamic diameter between 2.5 and ( ) air pollution is a severe environmental problem in developing countries, but its challenges to public health were rarely evaluated. Objective: We aimed to investigate the associations between day-to-day changes in and cause-specific mortality in China. Methods: We conducted a nationwide daily time-series analysis in 272 main Chinese cities from 2013 to 2015. The associations between concentrations and mortality were analyzed in each city using overdispersed generalized additive models. Two-stage Bayesian hierarchical models were used to estimate national and regional average associations, and random-effect models were used to pool city-specific concentration–response curves. Two-pollutant models were adjusted for fine particles with aerodynamic diameter ( ) or gaseous pollutants. Results: Overall, we observed positive and approximately linear concentration–response associations between and daily mortality. A increase in was associated with higher mortality due to nonaccidental causes [0.23%; 95% posterior interval (PI): 0.13, 0.33], cardiovascular diseases (CVDs; 0.25%; 95% PI: 0.13, 0.37), coronary heart disease (CHD; 0.21%; 95% PI: 0.05, 0.36), stroke (0.21%; 95% PI: 0.08, 0.35), respiratory diseases (0.26%; 95% PI: 0.07, 0.46), and chronic obstructive pulmonary disease (COPD; 0.34%; 95% PI: 0.12, 0.57). Associations were stronger for cities in southern vs. northern China, with significant differences for total and cardiovascular mortality. Associations with were of similar magnitude to those for in both single- and two-pollutant models with mutual adjustment. Associations were robust to adjustment for gaseous pollutants other than nitrogen dioxide and sulfur dioxide. Meta-regression indicated that a larger positive correlation between and predicted stronger city-specific associations between and total mortality. Conclusions: This analysis showed significant associations between short-term exposure and daily nonaccidental and cardiopulmonary mortality based on data from 272 cities located throughout China. Associations appeared to be independent of exposure to , carbon monoxide, and ozone. https://doi.org/10.1289/EHP2711
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.