Background: The triglyceride-glucose index (TyG index) has been regarded as a reliable alternative marker of insulin resistance and an independent predictor of cardiovascular outcomes. Whether the TyG index predicts adverse cardiovascular events in patients with diabetes and acute coronary syndrome (ACS) remains uncertain. The aim of this study was to investigate the prognostic value of the TyG index in patients with diabetes and ACS. Methods: A total of 2531 consecutive patients with diabetes who underwent coronary angiography for ACS were enrolled in this study. Patients were divided into tertiles according to their TyG index. The primary outcomes included the occurrence of major adverse cardiovascular events (MACEs), defined as all-cause death, non-fatal myocardial infarction and non-fatal stroke. The TyG index was calculated as the ln (fasting triglyceride level [mg/dL] × fasting glucose level [mg/dL]/2). Results: The incidence of MACE increased with TyG index tertiles at a 3-year follow-up. The Kaplan-Meier curves showed significant differences in event-free survival rates among TyG index tertiles (P = 0.005). Multivariate Cox hazards regression analysis revealed that the TyG index was an independent predictor of MACE (95% CI 1.201-1.746; P < 0.001). The optimal TyG index cutoff for predicting MACE was 9.323 (sensitivity 46.0%; specificity 63.6%; area under the curve 0.560; P = 0.001). Furthermore, adding the TyG index to the prognostic model for MACE improved the C-statistic value (P = 0.010), the integrated discrimination improvement value (P = 0.001) and the net reclassification improvement value (P = 0.019). Conclusions: The TyG index predicts future MACE in patients with diabetes and ACS independently of known cardiovascular risk factors, suggesting that the TyG index may be a useful marker for risk stratification and prognosis in patients with diabetes and ACS.
Background: Triglyceride-glucose index (TyG index) has been regarded as a reliable alternative marker of insulin resistance and an independent predictor of cardiovascular outcomes. Whether TyG index predicts adverse cardiovascular events in patients with diabetes and acute coronary syndrome (ACS) remains uncertain. The aim of the present study was to investigate the prognostic value of TyG index in patients with diabetes and ACS.Methods: A total of 2531 consecutive patients with diabetes who underwent coronary angiography for ACS were enrolled in the study. Patients were divided into 3 tertiles according to TyG index. The primary outcomes included the occurrence of major adverse cardiovascular events (MACE), defined as all-cause death, non-fatal myocardial infarction and non-fatal stroke. The TyG index was calculated as ln (fasting triglyceride level (mg/dL) ×fasting glucose level (mg/dL)/2).Results: The incidence of MACE increased with TyG index tertiles after 3-year follow-up. Kaplan-Meier curves showed significant differences in event-free survival rates among TyG index tertiles (P=0.005).Multivariate Cox hazards regression analysis revealed that TyG index was an independent predictor of MACE (95% CI 1.201-1.746; P<0.001). The optimal TyG index cut-off for predicting MACE was 9.323 (sensitivity 46.0% ; specificity 63.6%; area under the curve 0.560; P=0.001 ).Furthermore, adding TyG index to the prognostic model for MACE improved the C-statistic value (P=0.010), the integrated discrimination improvement value(P=0.001) and the net reclassification improvement value(P=0.019).Conclusions TyG index predicts future recurrent cardiovascular events in patients with diabetes and ACS, independently of known cardiovascular risk factors suggesting that TyG index may be a useful marker for risk stratification and prognosis in patients with diabetes and ACS.
BackgroundThe optimal revascularization technique in diabetic patients with complex coronary artery disease (CAD), including left main CAD and multivessel coronary disease (MVD), remains controversial. The current study aimed to compare adverse clinical endpoints of coronary artery bypass graft (CABG) and percutaneous coronary intervention (PCI) in patients with diabetes mellitus (DM).MethodsRelevant studies were found from MEDLINE, OVID, Science Direct, Embase and the Cochrane Central database from January 2010 to April 2019. Risk ratio (RR) with 95% confidence interval (CI) was used to express the pooled effect on discontinuous variables. Outcomes evaluated were all-cause mortality, major adverse cardiac/cerebrovascular events (MACCE), cardiac death, myocardial infarction, stroke, and repeat revascularization.ResultsSixteen studies were included (18,224 patients). PCI was associated with the increase risk for MACCE (RR 1.59, 95% CI 1.38–1.85), cardiac death (RR 1.76, 95% CI 1.11–2.80), MI (RR 1.98, 95% CI 1.53–2.57), repeat revascularization (RR 2.61, 95% CI 2.08–3.29). The risks for all-cause mortality (RR 1.23, 95% CI 1.00–1.52) and stroke (RR 0.71, 95% CI 0.48–1.03) were similar between two strategies. Stratified analysis based on studies design and duration of follow-up showed largely similar findings with the overall analyses, except for a significant increased risk of all-cause mortality (RR 1.32, 95% CI 1.04–1.67) in long-term group, and CABG was associated with a higher stroke rate compared to PCI, which are results that were found in RCTs (RR 0.47, 95% CI 0.28–0.79) and mid-term groups (RR 0.39, 95% CI 0.23–0.66).ConclusionsCABG was superior to PCI for diabetic patients with complex CAD (including left main CAD and/or MVD), but might be associated with a higher risk of stroke mid-term follow-up.Number of Protocol registration PROSPERO CRD 42019138505.
Background: Recent studies have shown that blood-based miRNAs are dysregulated in patients with acute myocardial infarction (AMI) and are therefore a potential tool for the diagnosis of AMI. Therefore, this study summarized and evaluated studies focused on microRNAs as novel biomarkers for the diagnosis of AMI from the last ten years. Methods: MEDLINE, the Cochrane Central database, and EMBASE were searched between January 2010 and December 2019. Studies that assessed the diagnostic accuracy of circulating microRNAs in AMI were chosen. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and area under the curve (AUC) were used to assess the test performance of miRNAs. Results: A total of 58 studies that included 8,206 participants assessed the diagnostic accuracy of circulating miRNAs in AMI. The main results of the meta-analyses are as follows: (1) Total miRNAs: the overall pooled sensitivity and specificity were 0.82 (95% CI: 0.79-0.85) and 0.87 (95% CI: 0.84-0.90), respectively. The AUC value was 0.91 (95% CI: 0.88-0.93) in the overall summary receiver operator characteristic (SROC) curve. (2) The panel of two miRNAs:
Background and Aims: Studies have highlighted the role of the triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio on subsequent cardiovascular events. However, the association of the TG/HDL-C ratio with survival outcomes in diabetic patients with coronary artery disease (CAD) treated with statins remains unknown. This study aimed to assess the predictive value of the TG/HDL-C ratio for all-cause mortality and cardiovascular death in diabetic patients with CAD treated with statins.Methods: The data of patients with type 2 diabetes and angiographically-confirmed CAD who were undergoing statin therapy and visited Tianjin Chest Hospital between January 2016 and September 2016 were retrospectively collected. The patients were categorized based on the baseline TG/HDL-C ratio tertile. Kaplan-Meier analysis and multivariate Cox proportional hazard regression were applied to assess the role of the TG/HDL-C ratio in predicting all-cause mortality and cardiovascular death.Results: A total of 2,080 patients were included. During the 4-year follow-up, 209 patients died, 136 of whom from cardiovascular death. The Kaplan-Meier analyses showed that an increased TG/HDL-C ratio was associated with an increased risk of all-cause mortality (P < 0.001) and cardiovascular death (P < 0.001). The multivariate cox hazard regression analysis revealed a similar effect of the TG/HDL-C ratio on the risk of all-cause mortality (P = 0.046) and cardiovascular death (P = 0.009). The role of the TG/HDL-C ratio in predicting all-cause mortality and cardiovascular death was similar among all subgroups (P > 0.050). For all-cause mortality, the TG/HDL-C ratio significantly improved the C-statistic from 0.799 to 0.812 (P = 0.018), and the net reclassification index (NRI) and integrated discrimination index (IDI) were 0.252 (95% CI: 0.112–0.392; P < 0.001) and 0.012 (95% CI: 0.003–0.022; P = 0.012), respectively. Similarly, for cardiovascular death, the TG/HDL-C ratio significantly improved the C-statistic from 0.771 to 0.804 (P < 0.001), and the NRI and IDI were 0.508 (95% CI: 0.335–0.680; P < 0.001) and 0.033 (95% CI: 0.015–0.050; P < 0.001).Conclusion: TG/HDL-C ratio might be useful for predicting all-cause mortality and cardiovascular death in diabetic patients with CAD treated with statins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.