Nickel is associated with reproductive toxicity. However, the reproductive toxicity of nickel nanoparticles (Ni NPs) is unclear. Our goal was to determine the association between nickel nanoparticle exposure and reproductive toxicity. According to the one-generation reproductive toxicity standard, rats were exposed to nickel nanoparticles by gavage and we selected indicators including sex hormone levels, sperm motility, histopathology, and reproductive outcome etc. Experimental results showed nickel nanoparticles increased follicle stimulating hormone (FSH) and luteinizing hormone (LH), and lowered etradiol (E2) serum levels at a dose of 15 and 45 mg/kg in female rats. Ovarian lymphocytosis, vascular dilatation and congestion, inflammatory cell infiltration, and increase in apoptotic cells were found in ovary tissues in exposure groups. For male rats, the weights decreased gradually, the ratio of epididymis weight over body weight increased, the motility of rat sperm changed, and the levels of FSH and testosterone (T) diminished. Pathological results showed the shedding of epithelial cells of raw seminiferous tubule, disordered arrangement of cells in the tube, and the appearance of cell apoptosis and death in the exposure group. At the same time, Ni NPs resulted in a change of the reproductive index and the offspring development of rats. Further research is needed to elucidate exposure to human populations and mechanism of actions.
Accumulating evidence has highlighted the important roles of long non-coding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) in tumor biology. However, the roles of cancer specific lncRNAs in lncRNA-related ceRNA network of lung adenocarcinoma (LUAD) are still unclear. In the present study, the 465 RNA sequencing profiles in LUAD patients were obtained from the cancer genome atlas (TCGA) database, which provides large sample RNA sequencing data free of charge, and 41 cancer specific lncRNAs, 25 miRNAs and 1053 mRNAs (fold change >2, p<0.05) were identified. Then, the lncRNA-miRNA-mRNA ceRNA network of LUAD was constructed with 29 key lncRNAs, 24 miRNAs and 72 mRNAs. Subsequently, we selected these 29 key lncRNAs to analyze their correlation with clinical features, and 21 of them were aberrantly expressed with tumor pathological stage, TNM staging system, lymph node metastasis and patient outcome assessment, respectively. Furthermore, there were 5 lncRNAs (BCRP3, LINC00472, CHIAP2, BMS1P20 and UNQ6494) positively correlated with overall survival (OS, log-rank p<0.05). Finally, 7 cancer specific lncRNAs were randomly selected to verify the expression in 53 newly diagnosed LUAD patients using qRT-PCR. The expression results between TCGA and qRT-PCR were 100% in agreement. The correlation between AFAP1-AS1 and LINC00472 and clinical features were also confirmed. Thus, our results showed the lncRNA expression profiles and we constructed an lncRNA-miRNA-mRNA ceRNA network in LUAD. The present study provides novel insight for better understanding of lncRNA-related ceRNA network in LUAD and facilitates the identification of potential biomarkers for diagnosis and prognosis.
Abstract. Recent evidence indicates that exosomes can mediate certain microRNAs (miRNAs) involved in a series of biological functions in tumor occurrence and development. Our previous studies showed that microRNA-21 (miR-21) was abundant in both esophageal cancer cells and their corresponding exosomes. The present study explored the function of exosome-shuttling miR-21 involved in esophageal cancer progression. We found that exosomes could be internalized from the extracellular space to the cytoplasm. The exosomederived Cy3-labeled miR-21 mimics could be transported into recipient cells in a neutral sphingomyelinase 2 (nSMase2)-dependent manner. miR-21 overexpression from donor cells significantly promoted the migration and invasion of recipient cells by targeting programmed cell death 4 (PDCD4) and activating its downstream c-Jun N-terminal kinase (JNK) signaling pathway after co-cultivation. Our population plasma sample analysis indicated that miR-21 was upregulated significantly in plasma from esophageal cancer patients and showed a significant risk association for esophageal cancer. Our data demonstrated that a close correlation existed between exosome-shuttling miR-21 and esophageal cancer recurrence and distant metastasis. Thus, exosome-shuttling miR-21 may become a potential biomarker for prognosis among esophageal cancer patients.
MicroRNAs (miRNAs), 18–24 nt non-coding RNAs, are thought to play important roles in cell proliferation, differentiation, apoptosis, and development. Recent studies suggest that some of the known microRNAs map to a single genomic locale within a single polycistronic transcript. But the roles of the cluster remain to be known. In order to understand the role and mechanism of a cluster of miR-143 and miR-145 in esophageal squamous cell carcinoma (ESCC), the association of mature miR-143 and miR-145 expression with the risk for esophageal cancer was evaluated in ESCC patients with a case-control study, and target protein regulated by mature miRNA was analyzed in ESCC cell lines with 3′UTR luciferase reporter assay. The expression levels of miR-143 and miR-145 were determined in 110 pairs of esophageal cancer tissues and adjacent normal tissues using real-time reverse transcription PCR. The relative expression of miR-143 and miR-145 were statistically different between cancer tissues and matched controls. The combined expression of miR-143 and miR-145 was significantly associated with the risk for esophageal cancer. Meanwhile, the reduced expression of two miRNAs in tumor patient was supposed to have a trend of lymph node metastases. The co-expression pattern of miR-143 and miR-145 was analyzed with Pearson correlation. It showed a significant correlation between these two miRNAs expression both in tissues and tumor cell lines. 3′UTR luciferase reporter assay indicated that Fascin Homolog 1 (FSCN1) could be co-regulated by miR-143 and miR-145. The protein level of FSCN1 showed no significant linear correlation with miR-143 and miR-145 expression in ESCC cell lines with Western blotting analysis. In conclusion, since miR-143 and miR-145 could regulate oncogenic FSCN1 and take part in the modulation of metastases, the result suggested the combination variable of miR-143 and miR-145 as a potential biomarker for earlier diagnosis and prognosis of esophageal cancer.
Abstract. Abnormal expression of long non-coding RNAs (lncRNAs) have been shown to play an important role in tumor biology. The Cancer Genome Atlas (TCGA) platform is a large sample sequencing database of lncRNAs, and further analysis of the associations between these data and patients' clinical related information can provide new approaches to find the functions of lncRNA. In the present study, 361 RNA sequencing profiles of gastric cancer (GC) patients were selected from TCGA. Then, we constructed the lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network of GC. There were 25 GC specific lncRNAs (fold change >2, p<0.05) identified, 19 of them were included in ceRNA network. Subsequently, we selected these 19 key lncRNAs and analyzed the correlations with clinical features and overall survival, 14 of them were discriminatively expressed with tumor size, tumor grade, TNM stage and lymphatic metastasis (p<0.05). In addition, eight lncRNAs (RPLP0P2, FOXD2-AS1, H19, TINCR, SLC26A4-AS1, SMIM10L2A, SMIM10L2B and SNORD116-4) were found to be significantly associated with overall survival (log-rank p<0.05). Finally, two key lncRNAs HOTAIR and UCA1 were selected for validation of their expression levels in 82 newly diagnosed GC patients by qRT-PCR. Results showed that the fold changes between TCGA and qRT-PCR were 100% in agreement. In addition, we also found that HOTAIR was significantly correlated with tumor size and lymphatic metastasis (p<0.05), and UCA1 was significantly correlated with tumor size, TNM stage and lymphatic metastasis (p<0.05).The clinical relevance of the two lncRNAs and the bioinformatics analysis results were almost the same. Overall, our study showed the GC specific lncRNAs expression patterns and a ceRNA network in GC. Clinical features related to GC specific lncRNAs also suggested these lncRNAs are worthwhile for further study as novel candidate biomarkers for the clinical diagnosis of GC and potential indicators for prognosis. IntroductionNoncoding RNAs (ncRNAs) are transcripts that have no ability of coding proteins, which widely exit in high eukaryotics. According to their characteristics, ncRNAs can be divided into several subtypes including transfer RNA, small nucleolar RNA (snoRNA), ribosomal RNA (rRNA), microRNA (miRNA) and long non-coding RNA (lncRNA). The amount of the ncRNAs transcripts is >98% of the whole genome transcripts and have been suggested to represent transcriptional noise (1). However, more and more evidence indicates that transcriptional output of genome is far more complex than predicted, and suggests new paradigms of ncRNA regulation (2).Recent studies suggest that the ncRNAs may play important biological roles in transcriptional regulation, cellular development, formation of chromosome and RNA modification (3). Based on the transcript size, ncRNAs are grouped into small ncRNAs (<200 bp) and long ncRNAs (>200 bp, up to 100 kb). lncRNA is the functional end-product, and the level of lncRNA expression correlates directly with the level of the active molecule. Thus, ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.