In June 2019, an earthquake sequence comprising five M > 5 events occurred in a region of southwest China with fluid injection for both hydraulic fracturing and salt mining, which raised an extensive controversy on the cause. Here we use interferometric synthetic aperture radar (InSAR) observations to determine the source parameters of the sequence and to investigate the relationship with local injection activities. Both Sentinel‐1 and Advanced Land Observing Satellite 2 SAR images are collected to measure coseismic and preseismic surface deformation. Geodetic inversions with coseismic observations show that the sequence ruptured a previously unmapped southwest‐dipping thrust fault above 3 km depth, which intersects with the open‐hole sections of wells for solution mining of salt. In the 4 months before the sequence, cumulative line‐of‐sight displacements near the wells are around 1–2 cm after correcting seasonal‐like deformation. Our results indicate that water injection likely enhanced pore pressure within the fault zone and thus contributed to inducing the sequence.
The current and planned synthetic aperture radar (SAR) sensors mounted on satellite platforms will continue to operate over the coming years, providing unprecedented SAR data for monitoring wide-range surface deformations. The near real-time processing of SAR interferometry (InSAR) data for the retrieval of ground-deformation time series is urgently required in the current era of big data. The state-of-the-art Kalman filter (KF) and sequential least squares (SLS) algorithms have been proposed to update an InSAR-driven ground-deformation time series. As a contribution of this study, we customize the conventional KF and SLS for big InSAR data for near real-time processing. The development of an accurate prediction model for KF-based InSAR processing is a challenge owing to the large scale of the targets for surface monitoring. We developed a modified KF algorithm, abbreviated as npKF, that does not require any prediction information, abbreviated as npKF. In this context, to avoid occupying a large storage space in SLS-based InSAR processing, we developed a modified SLS algorithm with a truncated cofactor matrix, abbreviated as TSLS. Using both simulated and actual SAR data, we evaluated the performance of these methods under three different aspects: accuracy, computation, and storage performance. With big data, the proposed method can estimate the deformation time series in near real time. It will be a reliable and effective tool for producing near real-time InSAR deformation products in the coming era of processing big SAR data and will play a part in the geologic hazard routine monitoring and early warning system.
The Xinmo landslide occurred on 24 June 2017 and caused huge casualties and property losses. As characteristics of spatiotemporal pre-collapse deformation are a prerequisite for further understanding the collapse mechanism, in this study we applied the interferometric synthetic aperture radar (InSAR) technique to recover the pre-collapse deformation, which was further modeled to reveal the mechanism of the Xinmo landslide. Archived SAR data, including 44 Sentinel-1 A/B data and 20 Envisat/ASAR data, were used to acquire the pre-collapse deformation of the Xinmo landslide. Our results indicated that the deformation of the source area occurred as early as 10 years before the landslide collapsed. The deformation rate of source area accelerated about a month before the collapse, and the deformation rate in the week before the collapse reached 40 times the average before the acceleration. Furthermore, the pre-collapse deformation was modeled with a distributed set of rectangular dislocation sources. The characteristics of the pre-collapse movement of the slip surface were acquired, which further confirmed that a locked section formed at the bottom of the slope. In addition, the spatial-temporal characteristics of the deformation was found to have changed significantly with the development of the landslide. We suggested that this phenomenon indicated the expansion of the slip surface and cracks of the landslide. Due to the expansion of the slip surface, the locked section became a key area that held the stability of the slope. The locked section sheared at the last stage of the development, which triggered the final run-out. Our study has provided new insights into the mechanism of the Xinmo landslide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.