Oral administration of chicken egg yolk immunoglobulin (IgY) has attracted considerable attention as a means of controlling infectious diseases of bacterial and viral origin. Oral administration of IgY possesses many advantages compared with mammalian IgG including cost-effectiveness, convenience and high yield. This review presents an overview of the potential to use IgY immunotherapy for the prevention and treatment of terrestrial and aquatic animal diseases and speculates on the future of IgY technology. Included are a review of the potential application of IgY for the treatment of livestock diseases such as mastitis and diarrhea, poultry diseases such as Salmonella, Campylobacteriosis, infectious bursal disease and Newcastle disease, as well as aquatic diseases like shrimp white spot syndrome virus, Yersina ruckeri and Edwardsiella tarda. Some potential obstacles to the adoption of IgY technology are also discussed.
The combination of photothermal therapy (PTT) and gene therapy (GT) shows great potential to achieve synergistic anti-tumor activity. However, the lack of a controlled release of genes from carriers remains a severe hindrance. Herein, peptide lipid (PL) and sucrose laurate (SL) were used to coat single-walled carbon nanotubes (SCNTs) and multi-walled carbon nanotubes (MCNTs) to form bifunctional delivery systems (denoted SCNT-PS and MCNT-PS, respectively) with excellent temperature-sensitivity and photothermal performance. CNT/siRNA suppressed tumor growth by silencing survivin expression while exhibiting photothermal effects under near-infrared (NIR) light. SCNT-PS/siRNA showed very high anti-tumor activity, resulting in the complete inhibition of some tumors. It was highly efficient for systemic delivery to tumor sites and to facilitate siRNA release owing to the phase transition of the temperature-sensitive lipids, due to PL and SL coating. Thus, SCNT-PS/siRNA is a promising anti-tumor nanocarrier for combined PTT and GT.
Chitosan-alginate microcapsules were evaluated as a method of oral delivery of IgY antibodies. Physical characteristics, encapsulation efficiency (EE%), the loading capacity for IgY (IgY loading percentage, %, w/w of microcapsules), gastro-resistance, and release characteristics of these microcapsules in vitro under varying pH were investigated. Optimum physical factors were established for preparation of homogeneous, spherical, and smooth microcapsules. IgY loading% was not significantly altered by pH of the encapsulation medium. Encapsulation efficiency was highest (73.93%) at a pH of 3.5, above which EE% decreased significantly (p < 0.05). IgY was released from microcapsules upon exposure to simulated intestinal fluid (SIF, pH 6.8), and decreasing pH increased significantly IgY release (p < 0.05). The stability of IgY in simulated gastric fluid (SGF, pH 1.2) was greatly improved by encapsulation in chitosan-alginate microcapsules, and the residual activity was not affected by pH of the encapsulation medium. Moreover, microencapsulated IgY was significantly resistant to pepsin hydrolysis. This approach may enable intact IgY to reach target microorganisms within the lower digestive tract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.