The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads of the cosmic lighthouse program onboard China's Space Station, which is planned for operation starting around 2020 for about 10 years. The main scientific objectives of HERD are indirect dark matter search, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 10 4 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of seven X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side SKTs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV, 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10 −5 ; effective geometrical factors of >3 m 2 sr for electron and diffuse gamma-rays, >2 m 2 sr for cosmic ray nuclei. R&D is under way for reading out the LYSO signals with optical fiber coupled to image intensified CCD and the prototype of one layer of CALO.
To investigate the effect of blistering on hydrogen isotope (HI) retention, a series of deuterium plasma exposures were performed using recrystallized tungsten samples at 500 K with high fluences up to 1.0 × 10 28 ions m −2 in the linear plasma device STEP. An increase of blister density and deuterium retention was observed with increasing plasma fluence. Based on the simulation of the thermal desorption spectra using TMAP, defects with different detrapping energies are found to be located at a depth of tens of microns, which coincides with the depth of the grain boundaries (GBs) close to the surface. The defect characterizations using transmission electron microscopy and positron annihilation Doppler broadening identified the defects as dislocation type and vacancy type, which were created by blistering. It is suggested that these defects can diffuse deep into the material, and the interaction between the diffusion of the defects and GBs causes a peculiar deuterium desorption spectrum over plasma fluences. Additionally, these blister-induced defects are the main source of deuterium retention. Regarding the effect of the blister-induced defects on deuterium retention, a blister-dominated retention mechanism is proposed to describe HI retention in conditions when blistering is severe as in this study. This investigation provides a new insight into the effect of blistering on retention and the modelling of retention in a tokamak edge plasma environment.
Radiomic model reliability is a central premise for its clinical translation. Presently, it is assessed using test–retest or external data, which, unfortunately, is often scarce in reality. Therefore, we aimed to develop a novel image perturbation-based method (IPBM) for the first of its kind toward building a reliable radiomic model. We first developed a radiomic prognostic model for head-and-neck cancer patients on a training (70%) and evaluated on a testing (30%) cohort using C-index. Subsequently, we applied the IPBM to CT images of both cohorts (Perturbed-Train and Perturbed-Test cohort) to generate 60 additional samples for both cohorts. Model reliability was assessed using intra-class correlation coefficient (ICC) to quantify consistency of the C-index among the 60 samples in the Perturbed-Train and Perturbed-Test cohorts. Besides, we re-trained the radiomic model using reliable RFs exclusively (ICC > 0.75) to validate the IPBM. Results showed moderate model reliability in Perturbed-Train (ICC: 0.565, 95%CI 0.518–0.615) and Perturbed-Test (ICC: 0.596, 95%CI 0.527–0.670) cohorts. An enhanced reliability of the re-trained model was observed in Perturbed-Train (ICC: 0.782, 95%CI 0.759–0.815) and Perturbed-Test (ICC: 0.825, 95%CI 0.782–0.867) cohorts, indicating validity of the IPBM. To conclude, we demonstrated capability of the IPBM toward building reliable radiomic models, providing community with a novel model reliability assessment strategy prior to prospective evaluation.
PoS(ICRC2017)1077The High Energy cosmic-Radiation Detection (HERD) facility is one of several space astronomy payloads onboard China's Space Station, which is planned for operation starting around 2025 for about 10 years. The main scientific objectives of HERD are searching for signals of dark matter annihilation products, precise cosmic electron (plus positron) spectrum and anisotropy measurements up to 10 TeV, precise cosmic ray spectrum and composition measurements up to the knee energy, and high energy gamma-ray monitoring and survey. HERD is composed of a 3-D cubic calorimeter (CALO) surrounded by microstrip silicon trackers (STKs) from five sides except the bottom. CALO is made of about 7,500 cubes of LYSO crystals, corresponding to about 55 radiation lengths and 3 nuclear interaction lengths, respectively. The top STK microstrips of six X-Y layers are sandwiched with tungsten converters to make precise directional measurements of incoming electrons and gamma-rays. In the baseline design, each of the four side STKs is made of only three layers microstrips. All STKs will also be used for measuring the charge and incoming directions of cosmic rays, as well as identifying back scattered tracks. With this design, HERD can achieve the following performance: energy resolution of 1% for electrons and gamma-rays beyond 100 GeV and 20% for protons from 100 GeV to 1 PeV; electron/proton separation power better than 10 −5 ; effective geometrical factors of >3 m 2 sr for electron and diffuse gamma-rays, >2 m 2 sr for cosmic ray nuclei. R&D is under way for reading out the LYSO signals with optical fiber coupled to image intensified IsCMOS and CALO prototype of 250 LYSO crystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.