The outcome of treatment-refractory and/or relapsed pediatric T cell acute lymphoblastic leukemia (T-ALL) is extremely poor, and the genetic basis for this is not well understood. Here we report comprehensive profiling of 121 cases of pediatric T-ALL using transcriptome and/or targeted capture sequencing, through which we identified new recurrent gene fusions involving SPI1 (STMN1-SPI1 and TCF7-SPI1). Cases positive for fusions involving SPI1 (encoding PU.1), accounting for 3.9% (7/181) of the examined pediatric T-ALL cases, showed a double-negative (DN; CD4CD8) or CD8 single-positive (SP) phenotype and had uniformly poor overall survival. These cases represent a subset of pediatric T-ALL distinguishable from the known T-ALL subsets in terms of expression of genes involved in T cell precommitment, establishment of T cell identity, and post-β-selection maturation and with respect to mutational profile. PU.1 fusion proteins retained transcriptional activity and, when constitutively expressed in mouse stem/progenitor cells, induced cell proliferation and resulted in a maturation block. Our findings highlight a unique role of SPI1 fusions in high-risk pediatric T-ALL.
CT designed the research, analyzed the data and wrote the paper; IS supervised the work; PVR, SC, RP and CDB performed experiments; GZ provided AML cell lines, reagents and analyzed the data; SC and DB commented on the paper. SC and RF provided AML samples. AA provided TALL samples. CT, PVR, SC assembled the figures. AUTHOR CONTRIBUTIONS CT designed the research, analyzed the data and wrote the paper; IS supervised the work; PVR, SC, RP and CDB performed experiments; GZ provided AML cell lines, reagents and analyzed the data; SC and DB commented on the paper. SC and RF provided AML samples. AA provided TALL samples. CT, PVR, SC assembled the figures.
Although hepatoblastoma is the most common pediatric liver cancer, its genetic heterogeneity and therapeutic targets are not well elucidated. Therefore, we conducted a multiomics analysis, including mutatome, DNA methylome, and transcriptome analyses, of 59 hepatoblastoma samples. Based on DNA methylation patterns, hepatoblastoma was classified into three clusters exhibiting remarkable correlation with clinical, histological, and genetic features. Cluster F was largely composed of cases with fetal histology and good outcomes, whereas clusters E1 and E2 corresponded primarily to embryonal/combined histology and poor outcomes. E1 and E2, albeit distinguishable by different patient age distributions, were genetically characterized by hypermethylation of the HNF4A/CEBPA-binding regions, fetal liver-like expression patterns, upregulation of the cell cycle pathway, and overexpression of NQO1 and ODC1. Inhibition of NQO1 and ODC1 in hepatoblastoma cells induced chemosensitization and growth suppression, respectively. Our results provide a comprehensive description of the molecular basis of hepatoblastoma and rational therapeutic strategies for high-risk cases.
Programmed death 1 (PD‐1)/programmed death ligand 1 (PD‐L1) pathway blockade has become a promising therapeutic target in adult cancers. We evaluated PD‐L1 expression and tumor‐infiltrating CD8+ T cells in formalin‐fixed, paraffin‐embedded tumor specimens from 53 untreated pediatric patients with eight cancer types: neuroblastoma, extracranial malignant germ cell tumor, hepatoblastoma, germinoma, medulloblastoma, renal tumor, rhabdomyosarcoma, and atypical teratoid/rhabdoid tumor. One rhabdomyosarcoma with the shortest survival exhibited membranous PD‐L1 expression and germinoma contained abundant tumor‐infiltrating CD8+ T cells and PD‐L1‐positive macrophages. The PD‐1/PD‐L1 pathway tended to be inactive in pediatric cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.