This study, to our knowledge, is the first to explore the effects of nivolumab against ovarian cancer. The encouraging safety and clinical efficacy of nivolumab in patients with platinum-resistant ovarian cancer indicate the merit of additional large-scale investigations (UMIN Clinical Trials Registry UMIN000005714).
Emerging evidence has highlighted the host immune system in modulating the patient response to chemotherapy, but the mechanism of this modulation remains unclear. The aim of this study was to analyze the effect of chemotherapy on antitumor immunity in the tumor microenvironment of ovarian cancer. Treatment of ovarian cancer cell lines with various chemotherapeutic agents resulted in upregulated expression of MHC class I and programmed cell death 1 ligand 1 (PD-L1) in a NF-kB-dependent manner and suppression of antigen-specific T-cell function in vitro. In a mouse model of ovarian cancer, treatment with paclitaxel increased CD8 þ T-cell infiltration into the tumor site, upregulated PD-L1 expression, and activated NF-kB signaling. In particular, tumor-bearing mice treated with a combination of paclitaxel and a PD-L1/PD-1 signal blockade survived longer than mice treated with paclitaxel alone. In summary, we found that chemotherapy induces local immune suppression in ovarian cancer through NF-kB-mediated PD-L1 upregulation. Thus, a combination of chemotherapy and immunotherapy targeting the PD-L1/PD-1 signaling axis may improve the antitumor response and offers a promising new treatment modality against ovarian cancer. Cancer Res; 75(23);5034-45. Ó2015 AACR.
Snail is a major transcriptional factor that induces epithelial-mesenchymal transition (EMT). In this study, we explore the effect of Snail on tumor immunity. Snail knockdown in mouse ovarian cancer cells suppresses tumor growth in immunocompetent mice, associated with an increase of CD8+ tumor-infiltrating lymphocytes and a decrease of myeloid-derived suppressor cells (MDSCs). Snail knockdown reduces the expression of CXCR2 ligands (CXCL1 and CXCL2), chemokines that attract MDSCs to the tumor via CXCR2. Snail upregulates CXCR ligands through NF-kB pathway, and most likely, through direct binding to the promoters. A CXCR2 antagonist suppresses MDSC infiltration and delays tumor growth in Snail-expressing mouse tumors. Ovarian cancer patients show elevated serum CXCL1/2, which correlates with Snail expression, MDSC infiltration, and short overall survival. Thus, Snail induces cancer progression via upregulation of CXCR2 ligands and recruitment of MDSCs. Blocking CXCR2 represents an immunological therapeutic approach to inhibit progression of Snail-high tumors undergoing EMT.
Background V-domain Ig suppressor of T cell activation (VISTA) is a novel inhibitory immune-checkpoint protein. VISTA expression on tumour cells and the associated regulatory mechanisms remain unclear. We investigated VISTA expression and function in tumour cells, and evaluated its mechanism and activity. Methods VISTA in tumour cells was assessed by tissue microarray analysis, immunohistochemical staining and western blot. A series of in vitro assays were used to determine the function of tumour-expressed VISTA. In vivo efficacy was evaluated in syngeneic models. Results VISTA was highly expressed in human ovarian and endometrial cancers. Upregulation of VISTA in endometrial cancer was related to the methylation status of the VISTA promoter. VISTA in tumour cells suppressed T cell proliferation and cytokine production in vitro, and decreased the tumour-infiltrating CD8+ T cells in vivo. Anti-VISTA antibody prolonged the survival of tumour-bearing mice. Conclusions This is the first demonstration that VISTA is highly expressed in human ovarian and endometrial cancer cells, and that anti-VISTA antibody treatment significantly prolongs the survival of mice bearing tumours expressing high levels of VISTA. The data suggest that VISTA is a novel immunosuppressive factor within the tumour microenvironment, as well as a new target for cancer immunotherapy.
Previous studies have reported genome-wide mutation profile analyses in ovarian clear cell carcinomas (OCCCs). This study aims to identify specific novel molecular alterations by combined analyses of somatic mutation and copy number variation. We performed whole exome sequencing of 39 OCCC samples with 16 matching blood tissue samples. Four hundred twenty-six genes had recurrent somatic mutations. Among the 39 samples, ARID1A (62%) and PIK3CA (51%) were frequently mutated, as were genes such as KRAS (10%), PPP2R1A (10%), and PTEN (5%), that have been reported in previous OCCC studies. We also detected mutations in MLL3 (15%), ARID1B (10%), and PIK3R1 (8%), which are associations not previously reported. Gene interaction analysis and functional assessment revealed that mutated genes were clustered into groups pertaining to chromatin remodeling, cell proliferation, DNA repair and cell cycle checkpointing, and cytoskeletal organization. Copy number variation analysis identified frequent amplification in chr8q (64%), chr20q (54%), and chr17q (46%) loci as well as deletion in chr19p (41%), chr13q (28%), chr9q (21%), and chr18q (21%) loci. Integration of the analyses uncovered that frequently mutated or amplified/deleted genes were involved in the KRAS/phosphatidylinositol 3-kinase (82%) and MYC/retinoblastoma (75%) pathways as well as the critical chromatin remodeling complex switch/sucrose nonfermentable (85%). The individual and integrated analyses contribute details about the OCCC genomic landscape, which could lead to enhanced diagnostics and therapeutic options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.