SummaryThe purpose of this review was to assess the available literature regarding bonding between current adhesive systems and computer-aided design/computer-aided manufacturing (CAD/CAM) indirect resin materials, to provide clinicians with a comparative overview of the relevant bonding procedures. An electronic search was performed through PubMed based on the keywords CAD/CAM and dental bonding. Additional relevant literature was obtained from the citations in the articles. A total of 313 papers were identified, of which 281 were excluded as being unsuitable, and an additional 3 papers were identified, giving a total of 32 articles that are included in this review. Based on this survey, it is recommended that microretentive surfaces should be generated by either blasting or hydrofluoric acid etching. This initial process should be followed by silanization to ensure chemical adhesion prior to bonding to CAD/CAM indirect resin composite materials (including Lava Ultimet, KATANA AVENCIA block, Gradia Block, Cerasmart, Paradigm, and Block HC) and CAD/CAM polymer-infiltrated ceramics (such as Vita Enamic). The use of materials containing methyl methacrylate (MMA) also appears to improve the bonding of CAD/CAM poly(methyl methacrylate) (PMMA) resin materials (including XHIPC-CAD/CAM, artBloc Temp, and Telio).
The long-term durability of bonds between CAD/CAM resin blocks and luting agent cement was significantly reduced by artificial saliva contamination. However, sandblasting or phosphoric acid cleaning can recover bonding effectiveness by 75-85%.
This study was designed to clarify the interrelationship of factors that affect the value of microtensile bond strength (µTBS), focusing on nondestructive testing by which information of the specimens can be stored and quantified. µTBS test specimens were prepared from 10 noncarious human molars. Six factors of µTBS test specimens were evaluated: presence of voids at the interface, X-ray absorption coefficient of resin, X-ray absorption coefficient of dentin, length of dentin part, size of adhesion area, and individual differences of teeth. All specimens were observed nondestructively by optical coherence tomography and micro-computed tomography before µTBS testing. After µTBS testing, the effect of these factors on µTBS data was analyzed by the general linear model, linear mixed effects regression model, and nonlinear regression model with 95% confidence intervals. By the general linear model, a significant difference in individual differences of teeth was observed ( P < 0.001). A significantly positive correlation was shown between µTBS and length of dentin part ( P < 0.001); however, there was no significant nonlinearity ( P = 0.157). Moreover, a significantly negative correlation was observed between µTBS and size of adhesion area ( P = 0.001), with significant nonlinearity ( P = 0.014). No correlation was observed between µTBS and X-ray absorption coefficient of resin ( P = 0.147), and there was no significant nonlinearity ( P = 0.089). Additionally, a significantly positive correlation was observed between µTBS and X-ray absorption coefficient of dentin ( P = 0.022), with significant nonlinearity ( P = 0.036). A significant difference was also observed between the presence and absence of voids by linear mixed effects regression analysis. Our results showed correlations between various parameters of tooth specimens and µTBS data. To evaluate the performance of the adhesive more precisely, the effect of tooth variability and a method to reduce variation in bond strength values should also be considered.
This study aimed to evaluate the effect of sulfinic acid sodium salt interposition after acid and sodium hypochlorite treatment (NC treatment) on dentin bonding durability using a mild type one-step self-etching adhesive. Fifteen human third molars were randomly assigned into three experimental groups according to dentin pretreatment before applying the one-step self-etching adhesive: Cont group, without pretreatment; NC group, pretreatment with phosphoric acid and sodium hypochlorite gel; and NC+AC group, additional treatment with sulfinic acid sodium salt followed by the same pretreatment of the NC group. Microtensile bond strength was measured and the pre-treated dentin surface, fracture modes, and bonding interface were observed. The bond strength of the NC+AC group was significantly higher than that of the other groups (p<0.001). The dentin-adhesive interface was degraded after 1 year only in the Cont group. Our results demonstrated NC treatment improves bonding durability and application of sodium sulfinic acid salt after NC treatment improves bonding effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.