Background Borderline personality disorder (BPD) is characterized by an inability to regulate emotional responses. The amygdala is important in learning about the valence (goodness and badness) of stimuli and has been reported to function abnormally in BPD. Methods Event-related functional MRI (fMRI) was employed in three groups: unmedicated BPD (n=33) and schizotypal personality disorder (SPD;n=28) participants and healthy controls (n=32) during a task involving an intermixed series of unpleasant, neutral, and pleasant pictures each presented twice within their respective trial block/run. The amygdala was hand-traced on each participant’s structural-MRI scan which was co-registered to their BOLD-scan. Amygdala responses were examined with a mixed-model MANOVA with repeated measures. Results Compared with both control groups, BPD patients showed greater amygdala activation, particularly to the repeated emotional but not neutral pictures and a prolonged return to baseline for the overall BOLD response averaged across all pictures. Despite amygdala overactivation, BPD patients showed a blunted response on the self-report ratings of emotional but not neutral pictures. Fewer dissociative symptoms in both patient groups were associated with greater amygdala activation to repeated unpleasant pictures. Conclusions The increased amygdala response to the repeated emotional pictures observed in BPD was not observed in SPD patients suggesting diagnostic specificity. This BPD-related abnormality is consistent with the well-documented clinical feature of high sensitivity to emotional stimuli with unusually strong and long-lasting reactions. The finding of a mismatch between physiological and self-report measures of emotion reactivity in BPD patients suggests they may benefit from treatments which help them recognize emotions.
Magnetic resonance (MR) imaging studies have revealed fronto-temporal cortical gray matter volume reductions in schizophrenia. However, whether age-and sex-matched unmedicated schizotypal personality disorder (SPD) patients share some or all of the structural brain-imaging characteristics of schizophrenia patients has not been studied. We examined cortical gray/white matter volumes in a large sample of unmedicated schizophrenia-spectrum patients (n=79 SPD, n=57 schizophrenia) and 148 healthy controls. MR images were reoriented to standard position parallel to the anterior-posterior commissure line, segmented into gray and white matter tissue types, and assigned to Brodmann areas (BAs) using a postmortem-histological atlas. Group differences in regional volume of gray and white matter in the BAs was examined with MANOVA. Schizophrenia patients had reduced gray matter volume widely across the cortex but more marked in frontal and temporal lobes. SPD patients had reductions in the same regions but only about half that observed in schizophrenia and sparing in key regions including BA10. In schizophrenia, greater frontotemporal volume loss was associated with greater negative symptom severity and in SPD, greater interpersonal and cognitive impairment. Overall, our findings suggest that increased prefrontal volume in BA10 and sparing of volume loss in temporal cortex (BAs 22 and 20) may be a protective factor in SPD which reduces vulnerability to psychosis.
Prepulse inhibition (PPI) refers to a reduction in the amplitude of the startle eye-blink reflex to a strong sensory stimulus, the pulse, when it is preceded shortly by a weak stimulus, the prepulse. PPI is a measure of sensorimotor gating which serves to prevent the interruption of early attentional processing and it is impaired in schizophrenia-spectrum patients. In healthy individuals, PPI is more robust when attending to than ignoring a prepulse. Animal and human work demonstrate frontalstriatal-thalamic (FST) circuitry modulates PPI. This study used functional magnetic resonance imaging (fMRI) to investigate FST-circuitry during an attention-to-prepulse paradigm in 26 unmedicated schizophrenia-spectrum patients (13 schizotypal personality disorder (SPD), 13 schizophrenia) and 13 healthy controls. During 3T-fMRI acquisition and separately measured psychophysiological assessment of PPI, participants heard an intermixed series of high-and lowpitched tones serving as prepulses to an acoustic-startle stimulus. Event-related BOLD-response amplitude curves in FST regions traced on co-registered anatomical MRI were examined. Controls showed greater activation during attended than ignored PPI conditions in all FST regions--dorsolateral prefrontal cortex (Brodmann areas 46,9), striatum (caudate, putamen), and the thalamic mediodorsal nucleus (MDN). In contrast, schizophrenia patients failed to show differential BOLD responses in FST-circuitry during attended and ignored prepulses, whereas SPD patients showed greater-than-normal activation during ignored prepulses. Among the three diagnostic groups, lower left caudate BOLD activation during the attended PPI condition was associated with more deficient sensorimotor gating as measured by PPI. Schizophrenia-spectrum patients exhibit inefficient utilization of FST-circuitry during attentional modulation of PPI. Schizophrenia patients have reduced recruitment of FST-circuitry during task-relevant stimuli, whereas SPD patients allocate excessive resources during task-irrelevant stimuli. Dysfunctional FST activation, particularly in the caudate may underlie PPI abnormalities in schizophrenia-spectrum patients.
Background Superior temporal gyrus (STG/BA22) volume is reduced in schizophrenia and to a milder degree in schizotypal personality disorder (SPD), representing a less severe disorder in the schizophrenia-spectrum. SPD and Borderline personality disorder (BPD) are severe personality disorders characterized by social and cognitive dysfunction. However, while SPD is characterized by social withdrawal/anhedonia, BPD is marked by hyper-reactivity to interpersonal stimuli and hyper-emotionality. This is the first morphometric study to directly compare SPD and BPD patients in temporal volume. Methods We compared three age-gender- and education-matched groups: 27 unmedicated SPD individuals with no BPD traits, 52 unmedicated BPD individuals with no SPD traits, and 45 healthy controls. We examined gray matter volume of frontal and temporal lobe Brodmann areas (BAs), and dorsal/ventral amygdala from 3T magnetic resonance imaging. Results In the STG, an auditory association area reported to be dysfunctional in SPD and BPD, the SPD patients had significantly smaller volume than healthy controls and BPD patients. No group differences were found between BPD patients and controls. Smaller BA22 volume was associated with greater symptom severity in SPD patients. Reduced STG volume may be an important endophenotype for schizophrenia-spectrum disorders. SPD is distinct from BPD in terms of STG volume abnormalities which may reflect different underlying pathophysiological mechanisms and could help discriminate between them.
Background Consistent with the clinical picture of milder symptomatology in schizotypal personality disorder (SPD) than schizophrenia, morphological studies indicate SPD abnormalities in temporal lobe regions but to a much lesser extent in prefrontal regions implicated in schizophrenia. Lower fractional anisotropy (FA), a measure of white-matter integrity within prefrontal, temporal, and cingulate regions has been reported in schizophrenia but has been little studied in SPD. Aims To examine temporal and prefrontal FA in 30 neuroleptic-naïve SPD patients and 35 matched healthy controls. We hypothesized that compared with healthy controls (HCs), SPD patients would exhibit lower FA in temporal and anterior cingulum regions but relative sparing in prefrontal regions. Method We acquired diffusion tensor imaging (DTI) in all participants and examined FA in the white matter underlying Brodmann areas (BAs) in dorsolateral prefrontal (BA44,45,46), temporal (BA22,21,20), and cingulum (BA25,24,31,23,29) regions using multivariate-ANOVAs. Results Compared with healthy controls, the SPD group had significantly lower FA in left temporal but not prefrontal regions. In the cingulum, FA was lower in the SPD group in posterior regions (BA31 and 23), higher in anterior (BA25) regions and lower overall in the right but not left cingulum. Among the SPD group, lower FA in the cingulum was associated with more severe negative symptoms (e.g., odd speech). Conclusions Similar to schizophrenia, our results indicate cingulum-temporal lobe FA abnormalities in SPD and suggest that cingulum abnormalities are associated with negative symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.