Despite advances in the roles of long non-coding RNA (lncRNA) tumor suppressor candidate 7 (TUSC7) in cancer biology, which has been identified as a tumor suppressor by regulating cell proliferation, apoptosis, migration, invasion, cell cycle, and tumor growth, the function of TUSC7 in hepatocellular carcinoma (HCC) remains unknown. In this study, we observed that the expression of TUSC7 was immensely decreased in HCC. Clinically, the lower expression of TUSC7 predicted poorer survival and may be an independent risk factor for HCC patients. Moreover, TUSC7 inhibited cell metastasis, invasion, and epithelial-to-mesenchymal transformation (EMT) through competitively binding miR-10a. Furthermore, we found that TUSC7 could decrease the expression of Eph tyrosine kinase receptor A4 (EphA4), a downstream target of miR-10a as well as an EMT suppressor, through TUSC7-miR-10a-EphA4 axis. Taken together, we demonstrate that TUSC7 suppresses EMT through the TUSC7-miR-10a-EphA4 axis, which may be a potential target for therapeutic intervention in HCC.
Gastric cancer incidence is relatively higher in China than that in developed countries; however, molecular mechanisms considering the initiation and progression of gastric cancer are still unclear. For decades, numerous microRNAs have been found to regulate a wide range of biological functions in gastric cancer. However, the oncogenic function of miR-615-3p in gastric cancer has not been reported to date. With the help of gene and microRNA chips in 10 patients, we were able to screen differential expressed genes and microRNAs compared with normal gastric tissues. After that, online bioinformatics analysis tools were used to predict microRNAs' potential targets. As a result, miR-615-3p and its potential target, CELF2, were selected for further experiments. QRT-PCR and western blot results indicated the aberrant high expression of miR-615-3p and low expression of CELF2 in gastric cancer both in vivo and in vitro. Moreover, miR-615-3p expression correlated to T and M stage. Up regulation of miR-615-3p inhibited the apoptosis, promoted proliferation and migration and led to the down-regulation of CELF2. Meanwhile, down-regulation of miR-615-3p resulted in anti-tumor effects. Immunochemistry staining of CELF2 showed its association with T, N and M stage. In addition, overexpression of CELF2 could reverse miR-615-3p's oncogenic functions stated before. These findings indicate that miR-615-3p promotes gastric cancer proliferation and migration by suppressing CELF2 expression for the first time, providing clues for future clinical practices.
Aberrant autophagic processes have been found to have fundamental roles in the pathogenesis of different kinds of tumors, including hepatocellular carcinoma (HCC). P300/CBP-associated factor (PCAF), a histone acetyltransferase (HAT), performs its function by acetylating both histone and non-histone proteins. Our previous studies showed that PCAF was downregulated in HCC tissues and its high expression was significantly associated with patient survival after surgery, serving as a prognostic marker. In this study we found that overexpression of PCAF induced autophagy of HCC cells and its knockdown depressed autophagy. As type II programmed cell death, autophagy induced by PCAF-elicited cell death in HCC cells. In vivo experiments confirmed that PCAF-induced autophagy inhibited tumor growth. Subsequent in vitro experiments showed that PCAF promoted autophagy by inhibiting Akt/mTOR signaling pathway. Our findings show that PCAF is a novel modulator of autophagy in HCC, and can serve as an attractive therapeutic strategy of HCC treatment.
Abstract. Previous studies have demonstrated the aberrant expression and oncogenic role of B-cell CLL/lymphoma-3 (BCL-3) in human malignancies. However, the clinical significance of BCL-3 and its biological function in human hepatocellular carcinoma (HCC) remain unknown. In the present study, the expression levels of BCL-3 protein and mRNA in 90 pairs of HCC and matched non-tumor tissues were analyzed using immunohistochemistry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We found that the expression levels of BCL-3 protein and mRNA in HCC tissues were significantly higher than those in the matched tumor-adjacent tissues. In addition, positive expression of BCL-3 was associated with adverse clinicopathological characteristics of the HCC patients including hepatitis B virus (HBV) infection, tumor size, cirrhosis and advanced tumor-node-metastasis (TNM) stage. Moreover, HCC patients with positive expression of BCL-3 had significantly decreased 5-year overall survival and recurrence-free survival. Importantly, BCL-3 expression was an independent prognostic factor for indicating the survival of the HCC patients. Functionally, BCL-3 knockdown markedly inhibited cell viability, proliferation and cell cycle progression in HepG2 cells, while BCL-3 overexpression promoted these cellular processes in Huh7 cells. Accordingly, in vivo experiments indicated that BCL-3 knockdown prominently suppressed the tumor growth of HepG2 cells in nude mice. Mechanistically, we revealed that the expression of cyclin D1 was decreased after BCL-3 knockdown in the HepG2 cells and was increased after BCL-3 overexpression in the Huh7 cells. Cyclin D1 silencing was found to abrogate the functional effects of BCL-3 on cellular processes in Huh7 cells. Taken together, our data suggest that BCL-3 may serve as a promising biomarker and an effective therapeutic target of HCC. IntroductionHepatocellular carcinoma (HCC) is one of the most common forms of liver cancer (1) and ranks as the third-leading cause of cancer-related mortality (2). Although numerous therapeutic strategies have been employed to treat this fatal disease, the prognosis of HCC patients remains dismal with a low 5-year survival rate of ~30% (3,4). The unsatisfactory prognosis of HCC largely is attributed to the lack of diagnostic biomarkers and effective therapeutic targets. Therefore, it is of great importance to elucidate the exact mechanisms of the pathogenesis of HCC, and subsequently find promising biomarkers and therapeutic targets of HCC.B-cell CLL/lymphoma-3 (BCL-3) is an atypical member of the IκB family (5) and can bind NF-κB homodimeric complexes of p50 or p52, which switches the transcriptional properties of the homodimers from a repressive to an activating state (6). It was initially identified as a pro-oncogene in cancers of the blood, bone marrow and lymphatic system (7-9). Recently, emerging evidence suggests that BCL-3 also plays promoting roles in the development and progression of various solid tumors (10). The mRNA and protein exp...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.