Multidetector coronary computed tomography (CT), which is widely performed to assess coronary artery disease noninvasively and accurately, provides excellent image quality. Use of electrocardiography (ECG)-controlled tube current modulation and low tube voltage can reduce patient exposure to nephrotoxic contrast media and carcinogenic radiation when using standard coronary CT with a retrospective ECG-gated helical scan. Various imaging techniques are expected to overcome the limitations of standard coronary CT, which also include insufficient spatial and temporal resolution, beam-hardening artifacts, limited coronary plaque characterization, and an inability to allow functional assessment of coronary stenosis. Use of a step-and-shoot scan, iterative reconstruction, and a high-pitch dual-source helical scan can further reduce radiation dose. Dual-energy CT can improve contrast medium enhancement and reasonably reduce the contrast dose when combined with noise reduction with the use of iterative reconstruction. High-definition CT can improve spatial resolution and diagnostic evaluation of small or peripheral coronary vessels and coronary stents. Dual-source CT and a motion correction algorithm can improve temporal resolution and reduce coronary motion artifacts. Whole-heart coverage with 320-detector CT and an intelligent boundary registration algorithm can eliminate stair-step artifacts. By decreasing beam hardening and enabling material decomposition, dual-energy CT is expected to remove or reduce the depiction of coronary calcification to improve intraluminal evaluation of calcified vessels and to provide detailed analysis of coronary plaque components and accurate qualitative and quantitative assessment of myocardial perfusion. Fractional flow reserve derived from coronary CT is a state-of-the-art noninvasive technique for accurately identifying myocardial ischemia beyond coronary CT. Understanding these techniques is important to enhance the value of coronary CT for assessment of coronary artery disease.
Use of higher attenuation leads to a significant underestimation of stenosis in smaller vessels. Lower attenuation leads to slight and clinically acceptable overestimation of stenosis. The optimal vascular attenuation for stenosis detection in coronary 64-MDCT angiography is approximately 350 H.
Single-source dual-energy (DE) computed tomography (CT) with fast switching of tube voltage allows projection-based image reconstruction, substantial reduction of beam-hardening effects, reconstruction of accurate monochromatic images and material decomposition images (MDIs), and detailing of material composition by using x-ray spectral information. In vascular applications, DE CT is expected to overcome limitations of standard single-energy CT angiography, including patient exposure to nephrotoxic contrast medium and carcinogenic radiation, insufficient contrast vascular enhancement, interference from metallic and beam-hardening artifacts and severe vessel calcification, and limited tissue characterization and perfusion assessment. Acquisition of low-energy monochromatic images and iodine/water MDIs can reasonably reduce contrast agent dose and improve vessel enhancement. Acquisition of virtual noncontrast images, such as water/iodine MDIs, can reduce overall radiation exposure by replacing true noncontrast CT in each examination. Acquisition of monochromatic images by using metal artifact reduction software or acquisition of iodine/water MDIs can reduce metal artifacts with preserved or increased vessel contrast, and subtraction of monochromatic images between two energy levels can subtract coils composed of dense metallic materials. Acquisition of iodine/calcium (ie, hydroxyapatite) MDIs permits subtraction of vessel calcification and improves vessel lumen delineation. Sensitive detection of lipid-rich plaque can be achieved by using fat/water MDIs, the spectral Hounsfield unit curve (energy level vs CT attenuation), and a histogram of effective atomic numbers included in an image. Various MDIs are useful for accurate differentiation among materials with high attenuation values, including contrast medium, calcification, and fresh hematoma. Iodine/water MDIs are used to assess organ perfusion, such as in the lungs and myocardium. Understanding these DE CT techniques enhances the value of CT for vascular applications. (©)RSNA, 2016.
Prospective ECG-triggered coronary 64-MDCT has the potential to reduce radiation exposure while maintaining the diagnostic performance of retrospective ECG-gated coronary 64-MDCT.
This study aimed to estimate the radiation dose and cancer risk to adults in England, the USA and Hong Kong associated with retrospectively and prospectively electrocardiogram (ECG)-gated coronary computed tomography angiography (CTA) using currently practised protocols in Hong Kong. The doses were simulated using the ImPACT spreadsheet. For retrospectively ECG-gated CTA with pitches of 0.2, 0.22 and 0.24, the effective doses were 27.7, 23.6 and 20.7 mSv, respectively, for males and 23.6, 20.0 and 18.8 mSv, respectively, for females. For prospectively ECG-gated CTA, the effective dose was 3.7 mSv for both males and females. A table of lifetime attributable risks (LAR) of cancer incidence was set up for the English population for the purpose of estimating cancer risk induced by low-dose radiation exposure, as previously reported for US and Hong Kong populations. From the tables, the LAR of cancer incidence for a representative 50-year-old subject was calculated for retrospectively ECG-gated CTA to be 0.112% and 0.227% for English males and females, respectively, 0.103% and 0.228% for US males and females, respectively, and was comparatively higher at 0.137% and 0.370% for Hong Kong males and females, respectively; for prospectively ECG-gated CTA, the corresponding values were calculated to be 0.014% and 0.035% for English males and females, respectively, and 0.013% and 0.036% for US males and females, respectively, and again were higher at 0.017% and 0.060% for Hong Kong males and females, respectively. Our study shows that prospectively ECG-gated CTA reduces radiation dose and cancer risks by up to 87% compared with retrospectively ECG-gated CTA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.