BackgroundSacred lotus is a basal eudicot with agricultural, medicinal, cultural and religious importance. It was domesticated in Asia about 7,000 years ago, and cultivated for its rhizomes and seeds as a food crop. It is particularly noted for its 1,300-year seed longevity and exceptional water repellency, known as the lotus effect. The latter property is due to the nanoscopic closely packed protuberances of its self-cleaning leaf surface, which have been adapted for the manufacture of a self-cleaning industrial paint, Lotusan.ResultsThe genome of the China Antique variety of the sacred lotus was sequenced with Illumina and 454 technologies, at respective depths of 101× and 5.2×. The final assembly has a contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp, and covers 86.5% of the estimated 929 Mbp total genome size. The genome notably lacks the paleo-triplication observed in other eudicots, but reveals a lineage-specific duplication. The genome has evidence of slow evolution, with a 30% slower nucleotide mutation rate than observed in grape. Comparisons of the available sequenced genomes suggest a minimum gene set for vascular plants of 4,223 genes. Strikingly, the sacred lotus has 16 COG2132 multi-copper oxidase family proteins with root-specific expression; these are involved in root meristem phosphate starvation, reflecting adaptation to limited nutrient availability in an aquatic environment.ConclusionsThe slow nucleotide substitution rate makes the sacred lotus a better resource than the current standard, grape, for reconstructing the pan-eudicot genome, and should therefore accelerate comparative analysis between eudicots and monocots.
Although the collection of completely sequenced mitochondrial genomes is expanding rapidly, only recently has a phylogenetically broad representation of mtDNA sequences from protists (mostly unicellular eukaryotes) become available. This review surveys the 23 complete protist mtDNA sequences that have been determined to date, commenting on such aspects as mitochondrial genome structure, gene content, ribosomal RNA, introns, transfer RNAs and the genetic code and phylogenetic implications. We also illustrate the utility of a comparative genomics approach to gene identification by providing evidence that orfB in plant and protist mtDNAs is the homolog of atp8 , the gene in animal and fungal mtDNA that encodes subunit 8 of the F0portion of mitochondrial ATP synthase. Although several protist mtDNAs, like those of animals and most fungi, are seen to be highly derived, others appear to be have retained a number of features of the ancestral, proto-mitochondrial genome. Some of these ancestral features are also shared with plant mtDNA, although the latter have evidently expanded considerably in size, if not in gene content, in the course of evolution. Comparative analysis of protist mtDNAs is providing a new perspective on mtDNA evolution: how the original mitochondrial genome was organized, what genes it contained, and in what ways it must have changed in different eukaryotic phyla.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.