This study is aimed at performing a systematic review and a network meta-analysis of the effects of several membranes on vertical bone regeneration and clinical complications in guided bone regeneration (GBR) or guided tissue regeneration (GTR). We compared the effects of the following membranes: high-density polytetrafluoroethylene (d-PTFE), expanded polytetrafluoroethylene (e-PTFE), crosslinked collagen membrane (CCM), noncrosslinked collagen membrane (CM), titanium mesh (TM), titanium mesh plus noncrosslinked (TM + CM), titanium mesh plus crosslinked (TM + CCM), titanium-reinforced d-PTFE, titanium-reinforced e-PTFE, polylactic acid (PLA), polyethylene glycol (PEG), and polylactic acid 910 (PLA910). Using the PICOS principles to help determine inclusion criteria, articles are collected using PubMed, Web of Science, and other databases. Assess the risk of deviation and the quality of evidence using the Cochrane Evaluation Manual, and GRADE. 27 articles were finally included. 19 articles were included in a network meta-analysis with vertical bone increment as an outcome measure. The network meta-analysis includes network diagrams, paired-comparison forest diagrams, funnel diagrams, surface under the cumulative ranking curve (SUCRA) diagrams, and sensitivity analysis diagrams. SUCRA indicated that titanium-reinforced d-PTFE exhibited the highest vertical bone increment effect. Meanwhile, we analyzed the complications of 19 studies and found that soft tissue injury and membrane exposure were the most common complications.
With the development of ceramic technology, prosthodontic ceramics are becoming a useful option for improving esthetic outcomes in dentistry. In this paper, various ceramic materials were reviewed and evaluated, and their advantages and disadvantages and indications in oral prosthodontics were analyzed objectively. The properties of resin-based ceramics, polycrystalline ceramics, and silicate ceramics were compared and analyzed. Resin-based ceramics may replace other ceramic materials in the CAD/CAM field.
Cracked tooth syndrome refers to a series of symptoms caused by cracked teeth. This article reviews the current literature on cracked tooth syndrome from four aspects, etiology, diagnosis, management, and prevention, to provide readers integrated information about this. The article begins with an introduction to the odontiatrogenic factors and then covers the noniatrogenic factors that induce cracked tooth syndrome. While the former discusses inappropriate root canal therapy and improper restorative procedures, the latter covers the topics such as the developmental and functional status of cracked tooth syndrome. This is then followed by the description of common clinical diagnosis methods, the prospects of new technologies, and summaries of current clinical management methods, including immediate management and direct and indirect restoration. In the final section, preventive methods and their importance are proposed, with the aim of educating the common population.
Poloxamer is a triblock copolymer with amphiphilicity and reversible thermal responsiveness and has wide application prospects in biomedical applications owing to its multifunctional properties. Poloxamer hydrogels play a crucial role in the field of tissue engineering and have been regarded as injectable scaffolds for loading cells or growth factors (GFs) in the last few years. Hydrogel micelles can maintain the integrity and stability of cells and GFs and form an appropriate vascular network at the application site, thus creating an appropriate microenvironment for cell growth, nerve growth, or bone integration. The injectability and low toxicity of poloxamer hydrogels make them a noninvasive method. In addition, they can also be good candidates for bio-inks, the raw material for three-dimensional (3D) printing. However, the potential of poloxamer hydrogels has not been fully explored owing to the complex biological challenges. In this review, the latest progress and cutting-edge research of poloxamer-based scaffolds in different fields of application such as the bone, vascular, cartilage, skin, nervous system, and organs in tissue engineering and 3D printing are reviewed, and the important roles of poloxamers in tissue engineering scaffolds are discussed in depth.
After several years of research and development, it has been reported that magnesium alloys can be used as degradable metals in some medical device applications. Over the years, fluoride coatings have received increasing research attention for improving the corrosion resistance of magnesium. In this paper, different methods for preparing fluoride coatings and the characteristics of these coatings are reported for the first time. The influence of the preparation conditions of fluoride coatings, including the magnesium substrate, voltage, and electrolyte, on the coatings is discussed. Various properties of magnesium fluoride coatings are also summarized, with an emphasis on corrosion resistance, mechanical properties, and biocompatibility. We screened experiments and papers that planned the application of magnesium fluoride coatings in living organisms. We have selected the literature with the aim of enhancing the performance of in vivo implants for reading and further detailed classification. The authors searched PubMed, SCOPUS, Web of Science, and other databases for 688 relevant papers published between 2005 and 2021, citing 105 of them. The selected time range is the last 16 years. Furthermore, this paper systematically discusses future prospects and challenges related to the application of magnesium fluoride coatings to medical products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.