Summary
To investigate the molecular mechanisms underlying islet dysfunction and insulin resistance in diet-induced diabetes, we conducted temporal RNA sequencing of tissues responsible for insulin secretion (islets) and action (liver) every 4 weeks in mice on high-fat (HFD) or chow diet for 24 weeks, linking to longitudinal profile of metabolic characteristics. The diverse responses of α, β, and δ cells to glucose and palmitate indicated HFD-induced dynamic deterioration of islet function from dysregulation to failure. Insulin resistance developed with variable time course in different tissues. Weighted gene co-expression network analysis and Ingenuity Pathway Analysis implicated islets and liver jointly programmed β-cell compensatory adaption via cell proliferation at early phase and irreversible islet dysfunction by inappropriate immune response at later stage, and identified interconnected molecules including growth differentiation factor 15. Frequencies of T cell subpopulation showed an early decrement in Tregs followed by increases in Th1 and Th17 cells during progression to diabetes.
Streptococcus agalactiae and Candida albicans often co-colonize the female genital tract, and under certain conditions induce mucosal inflammation. The role of the interaction between the two organisms in candidal vaginitis is not known. In this study, we found that co-infection with S. agalactiae significantly attenuated the hyphal development of C. albicans, and that EFG1-Hwp1 signal pathway of C. albicans was involved in this process. In a mouse model of vulvovaginal candidiasis (VVC), the fungal burden and the levels of pro-inflammatory cytokines, IL-1β, IL-6 and TNF-α showed a increase on co-infection with S. agalactiae, while the level of TH17 T cells and IL-17 in the cervicovaginal lavage fluid were significantly decreased. Our results indicate that S. agalactiae inhibits C. albicans hyphal development by downregulating the expression of EFG1-Hwp1. The interaction between S. agalactiae and C. albicans may attenuate host vaginal mucosal TH17 immunity and contribute to mucosal colonization by C. albicans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.