The photocatalytic oxidation of methanol on a rutile TiO2(110) surface was studied by means of thermal desorption spectroscopy (TDS) and X-ray photoelectron spectroscopy (XPS). The combined TDS and XPS results unambiguously identify methyl formate as the product in addition to formaldehyde. By monitoring the evolution of various surface species during the photocatalytic oxidation of methanol on TiO2(110), XPS results give direct spectroscopic evidence for the formation of methyl formate as the product of photocatalytic cross-coupling of chemisorbed formaldehyde with chemisorbed methoxy species and clearly demonstrate that the photocatalytic dissociation of chemisorbed methanol to methoxy species occurs and contributes to the photocatalytic oxidation of methanol. These results not only greatly broaden and deepen the fundamental understanding of photochemistry of methanol on the TiO2 surface but also demonstrate a novel green and benign photocatalytic route for the synthesis of esters directly from alcohols or from alcohols and aldehydes.
Pd nanocrystals were prepared by the reduction of a H(2)PdCl(4) aqueous solution with C(2)H(4) in the presence of different amounts of poly(N-vinyl-2-pyrrolidone) (PVP). Their average size decreases monotonically as the PVP monomer/Pd molar ratio increases up to 1.0 and then does not vary much at higher PVP monomer/Pd molar ratios. Infrared spectroscopy and X-ray photoelectron spectroscopy results reveal the interesting size-dependent interaction of PVP molecules with Pd nanocrystals. For fine Pd nanocrystals capped with a large number of PVP molecules, each PVP molecule chemisorbs with its oxygen atom in the ring; for large Pd nanocrystals capped by a small number of PVP molecules, each PVP molecule chemisorbs with both the oxygen atom and nitrogen atom in the ring, which obviously affects the structure of chemisorbed PVP molecules and even results in the breaking of involved C-N bonds of some chemisorbed PVP molecules. Charge transfer always occurs from a chemisorbed PVP ligand to Pd nanocrystals. These results provide novel insights into the PVP-metal nanocrystal interaction, which are of great importance in the fundamental understanding of surface-mediated properties of PVP-capped metal nanocrystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.